«

»

3.1.4. –

- 2023

1		4
		12
1.1	-	12
1.2		19
1.3	-	27
2		35
2.1	,	35
2.2		39
2.2.1		39
2.2.2		40
2.2.3	-	41
2.2.4		41
2.2.42.2.5		41 42
3	• •	44
3.1	-	
		44
3.2	,	65

3.3	-	
		85
	4	
	-	
		109
4.1	-	
	-	
		110
		121
		126
		128
		130
		131

(), (, 2019). 1,8%. 14% (., 2018). (, . ., 2015; ., 2017). (5)

```
. (
                                                                        ., 2015;
               ., 2009;
                                            ., 2012;
              ., 2016;).
                                            ), 93%
                                            , 2018).
         31,8%
                                                ., 2011).
                                                        (K. Wellington et al., 2012; .
Poursafa et al., 2015; Li et al., 2016; N. Auger et al., 2017; B. Bailey et al., 2022;).
                                                                      ., 2018; Hlimi
                                         ., 2018;
2015; Dadvand ., 2017).
                                               . ., 2014;
                                                                         ., 2017;
           ., 2020;
                                  . ., 2020).
```

```
. ., 2017),
                                                   (29,5%),
             (31%),
       (9-10%)
                                             (47%).
                                 80%
                                                                  ., 2017).
                                                                                2,9
                                                                               40,0
                                                        2014
  14,2%),
    ., 2014).
                                           (Immink . t al., 2008; Wellington . et
al., 2012; Morikawa . et al., 2014; Ali . . et al., 2015; Poursafa .et al., 2015;
Hlimi ., 2015; Li . et al., 2016; Auger N. et al., 2017)
```

B. Melo, M. Amorim, L. Katz,

I. Coutinho,	J.N. 1	Figuei	roa,]	R. N	Vasiri,	A.	Ahı	madi	Sha	dmeh	ri, P.	Khajeh	Ghiassi
M. Sarafraz	Yazdi	, Tran	Thi-	Chie	n, Boı	ımeı	ndil,	Aria	ne, E	Bussie	res, L	aurence (et al.
,													-
						,							,
		,					,				,		
	, .	•			,				,				
			,										
													•
			-	_									-
													-
													-
			,										•
				:								•	
1.				•	_								
													-
2.													-
3.													
													-
						•							
4.											,		,
													-
5												•	
5.													-
									•				
								•					

,

: 1. 2. 3.

().),))

10 **«** (174),

VII

«

, 2021); XIV **«**

» (, 2021); ${\it Modern}$

scientific challenges and trends» (, 2020); XV

```
«
                                                          , 2021).
                                         (
                                              8
                                                                        5 –
«
                                      «
                                      » (20.06.2022
                                                                       7).
                                                                   3.1.4. –
                                                          1, 4 5
                                                                     146
                                    36
                                                     34
```

143

(67

76

).

1

1.1

90

[88, 121]. 15,7% [18]. 90 [7]. American College of Obstetricians and Gynecologists (ACOG)) 140 /

,	,	160 /
110 [108].	()	, -
	20-	-
	,	-
2–8%	. [18, 55].	
		-
, -	,	, -
,	, 20	35, -
-	, (>30),	-
[22, 120].	,	-
,		,
30	•	-
		:
1)	, [131];	-
2)	L J/	,
	[53];	-
3)	,	-
,	[77]	-
4)	[77];	-
,		-
[50, 82,	112];	

```
5)
                      (PlGF)
                                                  (VEGF-A)
    (
             (P1GF))
                                                                        (fms-
                       (Flt-1,
                                                      sVEGFR1)
                                                                  3-
                      - KDR (kinase insert domain receptor),
       VEGFR2).
                                         sFlt-1, TNF- , VCAM, 1CAM, NSE
             VEGF, P1GF
TNF-
      [75, 128, 143];
   6)
          -1.
                                      -1
                                                    [93, 113];
   7)
                                                                     [111];
                                                                 2,
   8)
                                                           [54];
                              3-
   9)
                                                  [138];
    10)
   A2 [137].
```

```
[88, 121].
                         [88, 121].
                                               [140].
                                      (
                                                                      ).
                                                                       -1 (hypoxia-
1nducible factor-1, H1F-1).
                                                         VEGF
                                                                 Flt-1 [91].
                                                                  vegfRl,
                                                                VEGF
                                                                         PlGF.
10
                                                                            );
```

```
(
       ).
                                                         [18].
                                  «
                                         >>
   [29].
                             [18, 29].
[76, 91].
[43, 133].
                                                   [34, 43].
```

```
1-
 (
      ),
                                   ),
                   (PAPP-A) P1GF [47, 55, 97, 114].
                                                                 1-
               [114].
                          30-40%
             [139].
             [14, 47, 89]
```

20-

93% [116, 129]. 11–13-12 (ADAM12) 4 (RBP4) [17, 23, 24]. 1-Perkin Elmer's Pre-eclampsia Predictor $^{\mathrm{TM}}$ [17, 98]. [37, 81, 122]. [81, 122]. 1-

,

(80–90%) [28, 38, 63].

,

, 90 .

,

,

-.

1.2

-

```
[103].
                                                                    Chesley, Davies,
Sinnathuray, Rath
                            [65].
     >>
                                            [19, 25, 49].
                                                                          [19, 25, 65].
                     [69, 70, 71, 72].
```

[49, 65, 72].

		Sandie Ha ((2022)	
	,	, –	, ,	
,	,	,	[100].	
		, [19].	,	
				,
	,		,	

,

[82, 83, 90, 99, 101]. 2016 P. Dadvand [92]. [90]. [135]. [117, 118].

.

[118]. [95]. [95, 130]. [35, 42, 52, 78, 79, 103, 119, 124, 126, 127, 130, 134, 142].

,

D [123]. (), ([80, 84, 104]. AJ. Beltran, J. Wu, O. Laurent (2013) [86]. 2007 1,5 2 [76].

(2007).

```
[26].
                                                        (
                                                                                )
26–35
                                                                           [26, 74].
       [32].
```

75% (p<0,001). [33]. 2004 J.K. Phillips 7904 142 (=0,003) 2,3%; 1,7; 95% 1,06, 2,75) (1,4%) [125]. (S. Shashar et al., 2020) 1- 3-

,

[135].

[19, 25, 49, 68, 69, 70, 72, 71, 73, 90, 99, 100, 109],

,

1.3

[45].

,

, , , [15].

,

[4, 6, 8, 12, 13, 31, 39].

.

,

```
(HIF)-1,
                                                        70 (HSP70)
                                                                       NO [94].
                                ),
                                          ).
                                       [136].
                                       ).
                                                                                   85
                                                 [136].
      [4, 6, 8, 12, 13, 31, 39].
(2014), «...
```

```
».
                                                                                 [6, 8,
12, 31].
                                                                     (
                                                                    ),
                                                                    [40].
      (2020)
                                                                          3600 )
                                       (
```

.

					•				
,	[66].							_	
	2500),						((2014)
3	·		,					,	,
	1,3					٠			
,		5–6							
,			,	ļ	, [53].				
,		,					-	,	
				,					,
[58	3].							,	

. . .

(2016),			
,			•
,		, –	
•			
		, ,	,
,	,	• ,	
,			
		,	
			,
[60]	_		
[60].	(, 2017)	
	(, 2017)	
, ,			
		,	
, ,			
. ,		,	
(31%),		(29,5%),	
(9–10%)		(47%).	
(0.40())	(37,7%),		(210)
(9,4%),	(29.50/)		(21%
	(28,5%).		
(29 32,2%)			
80%	•		

	,		;	,		,
			[61].	,		
	,	,				[67]. ,
	-	,				
« »			,			,
			•		,	, [59].
	9	3%			-	,
	,	,			,	
	C),	-	-20°	,	

-40° .

```
+40°
+50°
                                         [64].
                                     ).
                  (
                        ) [1, 3, 10, 44, 62].
                                                            300
                                                                    7495
                                                      3
                                                                 [64].
```

,

•

,
,
,
,
,
,

.

2

2.1

```
«
 (
                                         )
                                      (
                                                                           ).
                                                                   2021
                                              2019
                             174
4-
                                                                      1.
                                              1130-
                                                         20.10.2020 . «
                                             «
                                                     21.02.2015
```

, 1993).

(

10 11.12.2019

«

1 –

4-63 1-2-51 30 3-30 4-160/100 6 5 / 3+ - 500

_	•
_	;
_	•
	1- :
_	
_	
_	:
2500 .	
_	18–44 .
_	
	2- :
_	
· _	
· _	;
2500 .	•
2300 .	18–44 .
_	18–44 .
_	•
	3- :
_	
•	
_	·
_	:
2500 .	
_	18–44 .
_	

4-

_							-
_							
_		:					
2500 .		•		,			
2500 .		10 44					
_		18–44 .					
_			•				
					:		
_							
_							
_							
		•					
_		•					
			:				
_							
_		•					
_						•	
							_
							_
,							
		. 1-					114
().	2-						-
					(),	-

2.2.

2.2.1.

		,
_		
		1130
20.10.2020 . «		1130
« «	»	«
~	"	``
		:
1.	:	•
,	,	
,	•	
2.3.		
3.	,	
	- ,	,
,	,	
4.	,	
5.	:	

-

.

5 2 2.2.2. 3-Vega» Micros» **«** () AcTDiff2 (Beckman Coulter,). – pH,

(

).

« ». D. 2.2.3. LeeWhitte), (), («Synchron 5 Delta» (Beckman, USA)), **«**

2.2.4.

_

```
«SIMENSACUSONX300» (
                                 ),
            «Voluson E8s/nD19047» «Voluson E8s/nD19049» ( ).
                             «1SUOG».
(1995).
    2.2.5.
                             MSExcel.
                                                     «Microsoft Excel»,
```

«Statistica 13.0».

(), %).

(m), (t).

(t)

() - .

95% (<0,05).

- U- - .

3.1.

=0,03) -

24 (47,3%)

1 - (1,9%)

14 (22,2%, =0,002) -

1- 2- , —10, —2.

2-

7 (11,1%,

51

26 (51,4%) –

1- 2- -10

1-	2-	
n=63	n=51	
6 (9,5%)	4 (7,8%)	p>0,05
5 (7,9%)	4 (7,8%)	p>0,05
7 (11,1%)	1 (1,9%)	=0,03
14 (22,2%)	26 (51,4%)	=0,002
42 (67,1%)	24 (47,3%)	=0,02
1 (1,5%)	_	p>0,05

1- 2-

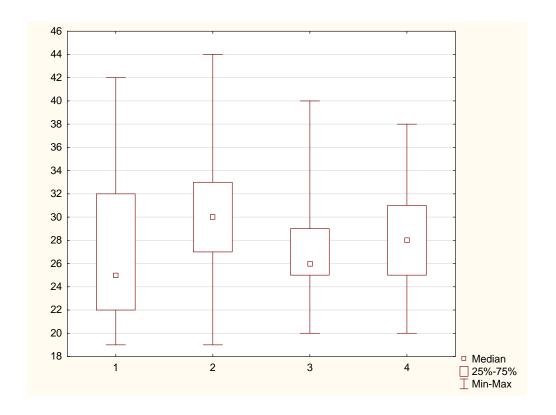
3.

3 –

1- 2-

	1- , n=63	2- , n=51	
1	2	3	4
	1	1	L
	23 (36,5%)	8 (15,6%)	=0,01
	47 (74,6%)	19 (37,2%)	=0,00003
	10(15,8%)	2(3,9%)	=0,03
	19(30,1%)	12(23,5%)	=0,43
	34 (53,9%)	5 (9,8%)	<0,05

3			
1	2	3	4
	ı		
	60 (95,2%)	47 (92,1%)	=0,49
	59 (93,6%)	32 (62,7%)	=0,000019
	9(14,2%)	7 (13,7%)	=0,93
	57 (90,4%)	6 (11,7%)	<0,05


```
(=0,01)
                                                       (=0,03)
                                1- .
                                 19 (37,2%) 2-
      47
               (74,6%) 1-
                                                      (=0,00003).
 1-
                       2- (9,8%), (<0,05).
  (53,9%),
                          59 (93,6%) 1-
                                                       32 (62,7%)
2-
             1-
                       (90,4\%),
                                              2-
                                                         (11,7\%).
                                                       : 26,7\pm6,0
              30,0\pm4,5
                                       , 27,3\pm4,3
     1-
                             2-
                                                       3-
 28,2\pm4,5
              4-
                             1).
                  (
                                                ( >0,05).
```

-

.

, 4,

: 1-

1 –

10 (5 1,170), 0,101

4-

1-	2-	3-	4-
n=63	n=51	n=30	n=30
1	11	4	13
(0,8%)	(9,6%)*	(13,3%)	(43,3%)**
1	20	4	16
(0,8%)	(17,5%)*	(13,3%)	(53,3%)**
55	18	18	1
(48%)	(15,7%)*	(60%)	(3,3%)
6	2	4	
(5,2%)	(1,7%)*	(13,3%)	_

*- 1- 2- (<0,05); **- 3- 4- (<0,05).

,

1- -30%,

2- 20%.

- 10% () 7% (8%) , -

1- (1,7%).

1- 22,2%, 2-

-31,3% (=0,27).

,

(5).

	1- , n=63	2- , n=51	3- , n=30	4- , n=30
1	2	3	4	5
	34 (30%)*	23 (20%)	8 (26,6%)	11 (36,6%)
	12 (10%)	18 (16%)	15 (50%)	15 (50%)
	8 (7%)	8 (7%)	4 (13,3%)	3 (10%)
	9 (8%)	2 (1,7%)	3 (10%)	1 (3,3%)
	4 (3,5%)	3 (2,6%)	_	3 (10%)
	8 (7%)	3 (2,6%)	3 (10%)	1 (3,3%)
	_	_	_	1 (3,3%)
	4 (3,5%)	-	_	_
	4 (3,5)	11 (9,6%)*	3 (10%)	_
	6 (5,2%)	2 (1,7%)	_	_
	8 (12,6%)	9 (17,6%)	2 (6,6%)	1 (3,3%)
	1 (1,5%)	2 (1,7%)	1 (3,3%)	_
* _	1	_ 2_	(<0.05):	

*- 1- 2- (<0,05);

**- 3- 4- (<0,05).

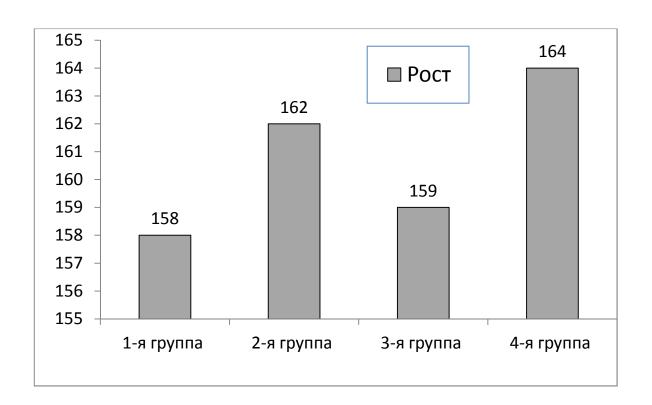
158,8±5,3

 $162,2\pm6,4$ 1- 2- (=0,002).

(=0,00003)

. 4- 164,0±5,1 ,

. (=0,02)


2- 3- $-162,2\pm6,4$

 $159,3\pm3,5$; 3- 4- - $159,3\pm3,5$

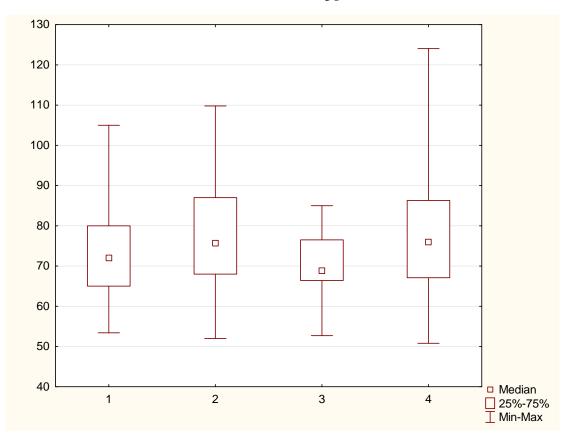
 $164,1\pm5,1$ (=0,0001). 2- 4-

•

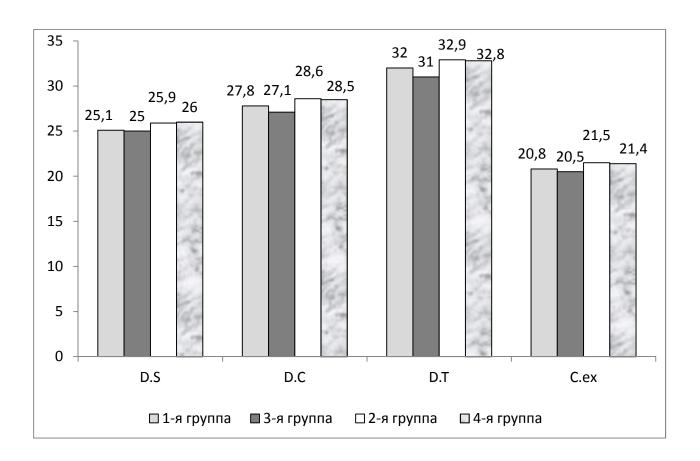
2.

2 -

. ,


$$73,3\pm11,8$$
 ,

$$-77.8\pm14.1$$
 (=0.06).


3- 4-
$$-69,9\pm8,1$$
 $78,1\pm16,1$ $(=0,01);$

2- 3- $-77,8\pm14,1$ 69,9 $\pm8,1$

(<0,05).

	1- , n=63	2- , n=51	
Distantiaspin	25,1±1,2	25,9±1,8	=0,0068
arum			
Distantiacrist	27,8±1,6	28,6±2,1	=0,02
arum			
Distantiatroc	32,1±2,2	32,9±2,5	=0,04
hanterica	32,1±2,2	32,9±2,3	-0,04
	20,8±2,1	21,5±2,2	=0,06

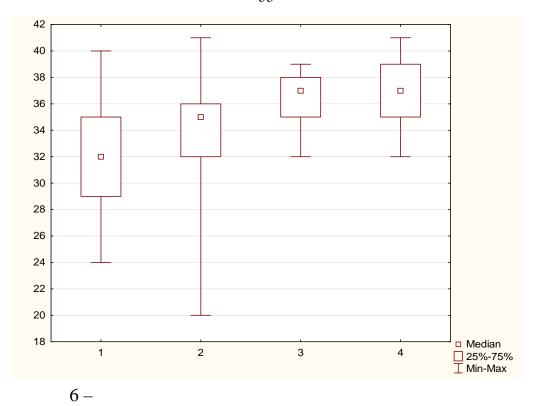

```
53
                                        1-
              distantia spinarum
25,1\pm1,2
                 25,9\pm1,8
                                      2- (=0,0068).
                                          27,8±1,6 ,
     Distantia cristarum 1-
                    2-
                           -28,6\pm2,1 (=0,02).
                                                                 distantia
                             32,1\pm2,2
                                               32,9±2,5
trochanterica
(=0,04).
                                                                      7,
                                             2- 3-
       7 –
                                                      2- 3-
```

	2- , n=51	3- , n=30	
Distantia spinarum	25,9±1,8	25,0±1,1	=0,01
Distantia cristarum	28,6±2,1	27,4±1,4	=0,006
Distantia trochanterica	32,9±2,5	31,7±2,0	=0,03
	21,5±2,2	20,5±1,6	=0,03

. , 1- 99,1±7,4

, 2- -104,1±9,3 (=0,001). 2- 3- -

, $98,5\pm5,4$ (=0,003). 1- $32,3\pm3,8$, 2- $-33,9\pm3,6$ (=0,02). 3- $36,5\pm1,7$,


130
125
120
115
110
105
100
95
90
85
80
1 2 3 4 Median
25%-75%
Min-Max

5 –

,

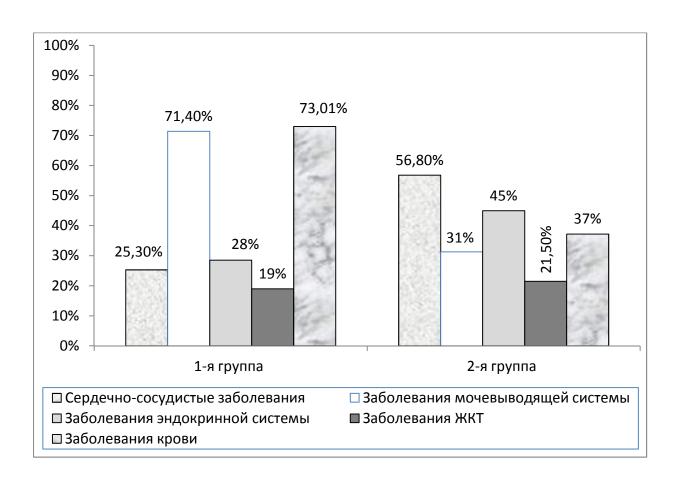
8, 7) , 1- (71,4%)

(73,01%), =0,000035 =0,001 .

8 –

1- 2-

	1- , n=63	2- , n=51	
-	16 (25,3%)	29 (56,8%)	=0,06
	45 (71,4%)	16 (31,3%)	=0,000035
	18 (28,5%)	23 (45%)	=0,109
	12 (19%)	11 (21,5%)	=0,57
	46 (73,01%)	19 (37,2%)	=0,001


7 , 2-- (56,8%) (45%), 1- . 63 -1- 12 (19%) ,

24 (47%) 51 .

4- (6,3%) 1- 4-

(7,8%) 2- -

9.

7 –

1- 2-

41 (65,6%)

63,

2-

•

1-

- 15 (29,4%) 51 .

2- 1 (1,9%) .

1-

1 (1,5%) 1- 1-

2 (3,17%) (10).

	1- , n=63	2- , n=51	3- , n=30	4- , n=30	
,	12 (19%)	24 (47%)*	1 (3,3%)	5 (16,6%)**	
	_	_	_	1 (3,3%)	
	_	_	_	_	
	4 (6,3%)	4 (7,8%)	3 (10%)	_	

* - 1- 2- (<0,05); ** - 2- 4- (<0,05).

10 –

	1- , n=63	2- , n=51	3- , n=30	4- , n=30
,	41 (65%)*	15 (29,4%)	3(10%)	6(20%)**
	_	1 (1,9%)	_	_
	1 (1,5%)	_	1(3,3%)	_
	2 (3,17%)	_	3 (10%)	_

*- 1- 2- (<0,05);

**- 1- 4- (<0,01).

```
- 27,4%.
 1-
                  17,4%, 2-
                                      [11].
                                    2 (3,9%) 2-
 1-
                  1 (1,5%)
                      5 (7,93%)
                                                   3 (5,8%)
                                        1-
2-
                                        1 (1,5%)
                                                         1-
        4 (7,8%) 2-
                         (
                               11).
       11 –
```

	1- , n=63	2- , n=51	3- , n=30	4- , n=30
	11 (17,4%)	14 (27,4%)*	2(6,6%)	7(23,3%)
,	1 (1,5%)	2 (3,9%)	_	_
	5 (7,93%)	3 (5,8%)	6 (20%)	_
	1 (1,5%)	4 (7,8%)	_	2 (10%)
* _	-	2- 3-	(<0,05)	•

12. 46 -(=0,001). (73,01%) 1-17 (33,3%) 2-2-2-3,9%. 3- 4-

> ()

87,3% (55), 66,6% (34) (=0,007).

12 –

1- , n=63	2- , n=51	3- , n=30	4- , n=30
4 (6,3%)	3 (5,8%)	5(16,6%)*	_
1 (1,5%)	2 (3,9%)	_	_
4 (6,3%)*	1 (1,9%)	1 (3,3%)	_
2 (3,1%)	3 (5,8%)	3 (10%)	1 (3,3%)
1 (1,5%)	2 (3,9%)	_	_

* - 1- 2- (<0,05); * - 2- 3- (<0,05).

- () (=0,007)

1- , 38% (24), 15,6% (8) - 2- .

(p=0,03)

13.

, TORCH- , , , , , , ,

,

_

14.

1- 2-

	1- , n=63	2- , n=51	
	55 (87,3%)	34 (66,6%)	=0,007
	24 (38%)	8 (15,6%)	=0,007
TORCH –	1 (1,5%)	_	=0,37
	10 (15,8%)	3 (5,8%)	=0,09
	5 (7,9%)	2 (3,9)	=0,37
	1 (1,5%)	_	=0,37
,	5 (7,9%)	1 (1,9%)	=0,15

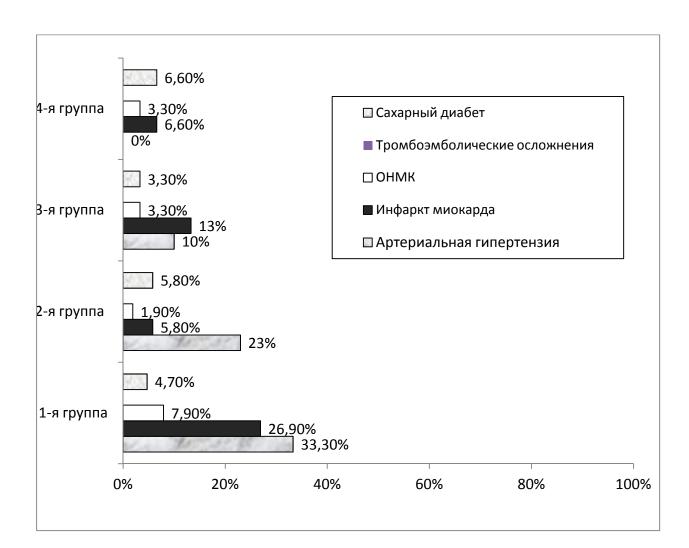
14 –

1- , n=63	2- , n=51	3- , n=30	4- , n=30
21 (33,3%)*	12 (23,%)	3 (10%)**	_
17 (26,9%)*	3 (5,8%)	4 (13,3%)**	2 (6,6%)
5 (7,9%)*	1 (1,9%)	1 (3,3%)	1 (3,3%)
_	_	_	_
3 (4,7%)	3 (5,8%)	1 (3,3%)	2 (6,6%)

* _

1- 2-

(<0,005);


**_

1- 3-

(<0,05).

.

, (8).

8 –

(15)

•

(27,4%), 1- (7,9%).

1-	2-	3-	4-
n=63	n=51	n=30	n=30
2 (3,1%)	3 (5,8%)	_	1(3,3%)
2 (3,1%)	_	_	_
5	14	4	11
(7,9%)	(27,4%)*	(13,3%)**	(36,6%)
1 (1,5%)	3 (5,8%)	1 (3,3%)	2 (6,6%)
6	1	3	_
(9,5%)	(1,9%)	(10%)	

1- 2-(<0,05); * _ (<0,05); ** _ 1- 3-***_ 1- 4-(<0,05); (<0,005); ****_ 2- 3-2- 4-(<0,05);*****_ ***** _ 3- 4-(<0,05).

16): 1-($-13,1\pm1,1$ (p=0,00001). $14,1\pm1,3$, 2-3-13,2±0,9 , (=0,001). 4-1- $12,5\pm1,3$, 1-, (=0.000001;=0.02;=0.01).2- 3- $29,8\pm4,4$ 1- $28,1\pm3,5$ 2-(=0,02). 3- 4- $28,7\pm3,3$ $28,7\pm2,8$

.

.

16 –

1- 2-

		1- n=63	2- n=51	
	,	14,1±1,3	13,1±1,1	=0,00001
	,	29,8±4,4	28,1±3,5	=0,02
		9 (14,2%)	1 (1,9%)	=0,02
		46 (73,01%)	50 (98,03%)	=0,0002
-		7 (11,1%)	_	=0,01
		27 (42,8%)	9 (17,6%)	=0,003
		36 (57,1%)	42 (82,3%)	=0,003
		55 (87,3%)	42 (82,3%)	=0,46
		8 (12,6%)	9 (17,6%)	=0,46

 1 (1,9%) 2 .
 46

 (73,01%) 1 50 (98,03%) 2 (=0,0002),

 7 (11,1%) 1 (=0,01).
 1

 42,8%,
 ,
 2 (=0,003).

 2 ,

82,3% (=0,003).

, 174 (4-) -

(71,4%) ((73,01%)). 65,6% (38%); (87,3%)

,

•

3.2.

1-

,

1- (65%), 2- -

(23,5%), =0,00005.

44,4%, 2- -17,6% (=0,002).

43 (68,2%) 1- 3 (5,8%) 2- (<0,05).

,

1- (17).

(17).

17 – 1- 2-

1-

1- , n=63	2- , n=51	
24 (38%)	12 (23,5%)	=0,09
41 (65%)	12 (23,5%)	=0,000005
_	1 (1,9%)	=0,26
28 (44,4%)	9 (17,6%)	=0,002
20 (31,7%)	12 (23,5%)	=0,33
43 (68,2%)	3 (5,8%)	<0,05
4 (6,3%)	1 (1,9%)	=0,25

2-

1- 2-: 39,6% (25) 1-19,6% (10) 2- (=0,02). 1-(=0,003).25,3% (16) 1,9% (1) 2-32 1-(50,7%)16 (31,3%) 2-(=0,03).47 (74,6%) 1-(29,4%) 2-(<0,05). 15 (=0,01)1-1-40 (63,4%) 2-7 (13,7%), (<0,05). 18).

> 18 – 1- 2-2-

1- , n=63	2- , n=51	
25 (39,6%)	10 (19,6%)	=0,02
16 (25,3%)	1 (1,9%)	=0,003
1 (1,5%)	1 (1,9%)	=0,88
32 (50,7%)	16 (31,3%)	=0,03
9 (14,2%)	2 (3,9%)	=0,06
47 (74,6%)	15 (29,4%)	=0,002
28 (44,4%)	17 (33,3%)	=0,23
40(63,4%)	7(13,7%)	<0,05
4(6,3%)	7(13,7%)	=0,18
	25 (39,6%) 16 (25,3%) 1 (1,5%) 32 (50,7%) 9 (14,2%) 47 (74,6%) 28 (44,4%) 40(63,4%)	25 (39,6%) 10 (19,6%) 16 (25,3%) 1 (1,9%) 1 (1,5%) 1 (1,9%) 32 (50,7%) 16 (31,3%) 9 (14,2%) 2 (3,9%) 47 (74,6%) 15 (29,4%) 28 (44,4%) 17 (33,3%) 40(63,4%) 7(13,7%)

3-

3-

19 –

1- , n=63 2- , n=51 33 (52,3%) 15 (29,4%) =0,0120 (31,7%) 5 (9,8%) =0,0041 (1,5%) 1 (1,9%) =0.8717 (33,3%) =0,1928 (44,4%) 9 (14,2%) 6 (11,7%) =0,6942 (66,6%) 18 (35,2%) =0,0007 31 (49,2%) 35 (68,6%) =0.0332 (50,7%) 21 (41,1%) =0,3151 (80,9%) 41 (80,3%) =0,9419 (30,1%) 29 (56,8%) =0,000073

56,8% 2-30,1% 1-

20). (

1- 2-

1-

32,381±5,950 $33,5\pm5,1$ 2-

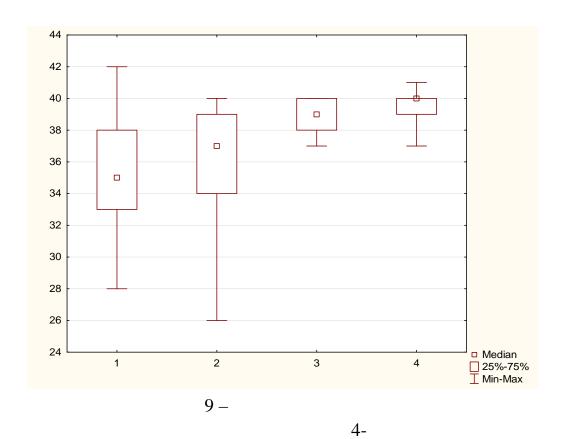
(=0,25).

1-34,7±3,5 35,3±4,4 (=0,43). 2-

20 -

1- 2-3-

-	1- , n=63	2- , n=51	
1	15 (23,8%)	13 (25,4%)	=0,86
1	4 (6,3%)	8 (15,6%)	=0,93
2	_	8 (15,6%)	=0,35
3	_	_	_


(<0,05). 2-

1-

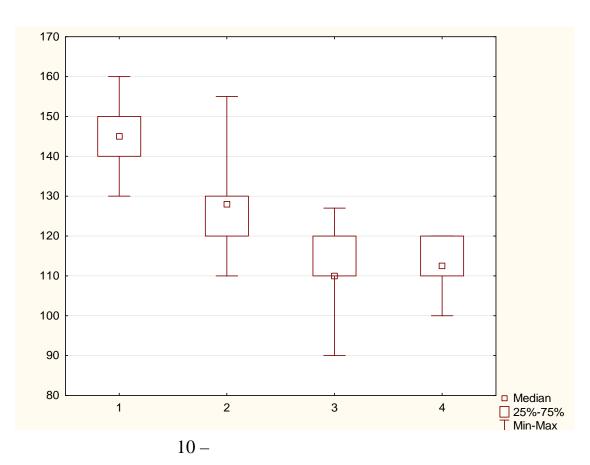
146,3±13,8 2- $-141,1\pm14,6$. . (=0,04).

```
1-
                               98,3±10,1 . .
93,3\pm10,1 . . ( =0,01).
      63
                         1-
                               13 (20,6%)
                                   , 2-
                                                 33 (64,7%) 51
         (=0,000001).
                      (19,04%)
                                                     , 6 (9,5%)
    1-
                   12
                         24 (38,09%) . 2-
   , 11 (17,4%)
                                                     10 (19,6%)
                         2(3.9\%) , 4(7.8\%)
                                                     14 (27,4%)
                                                (30,1\%),
                                        19
   . 1-
 22 (34,9%),
                             14 (22,2%). 2-
                8 (12,6%)
                          , 20 (39,2%) , 6 (11,7%)
 (33,3\%)
8 (15,6%)
                                            (1-2-),
                                (=0.59=0.40).
                                              1- 2-
                                              1-
35,4\pm3,5
                        36,4\pm3,1
              2-
                                   (=0.09). 3-
             39,0\pm0,9
                           4-
                                      39,3\pm1,2 .
                            1-
                                                3- 4-
(<0.05).
                      2-
                                    (=0.00005;=0.000007).
                      3- 4-
                   9.
                21,
                              1-
                                                     2-
(<0.05).
                                                            1-
 2-
                                        (=0,92).
                         144,2\pm8,8
                                     . . 1-
                                                    , 126,7\pm11,1
                    111,6±9,7 . .
          2-
                                     3-
```

1- 2- (<0,05).

21 – , 1-

2-

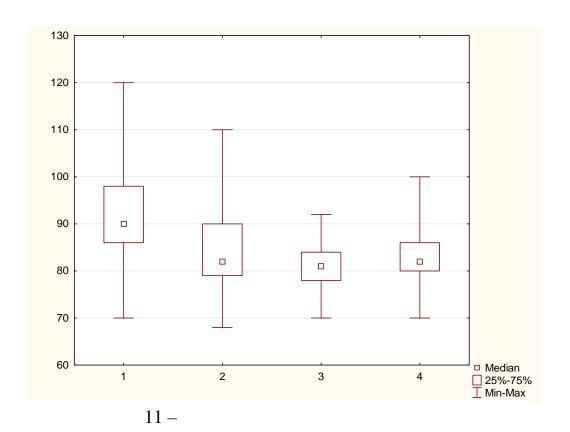

1- , n=63	2- , n=51
32 (50,7%)*	2 (3,9%)
36 (57,1%)*	4 (7,8%)
45 (71,4%)	36 (70,5%)

* - 1- 2- (<0,05).

1- 2- 94,6±5,8

. . 84,4±9,9 . . (<0,05). 3- 4-

(<0,05).


4-

```
1-
                                                                       91,7\pm 9,6
                                 -84,4\pm9,6
                                                               ( =0,0001). 3-
                      2-
                                       81,4±5,5
4-
                                                  83,5±6,2
                                                          1-
                                                                       ( <0,05;
=0,00004).
                                            11.
                                                               1-
                                                                   2-
                    ( =0,09).
                                          1-
```

(22).

1- 37 (58,7%)

2- 21 (41,1%) (=0,06). 30 (58,8%) 2- 26 (41,2%) 1- .

4-

22 –

1- 2-

	1- , n=63	2- , n=51
	31 (49,2%)	22 (43,1%)
	16 (25,3%)	5 (9,8%)
	1 (1,5%)	5 (9,8%)
	15 (23,8%)*	19 (37,2%)
d.	1 0	0.05)

*- 1- 2- (<0,05).

1- 2- (=0,01)

(23). 9 (14,2%)

1- 1 (1,9%) 2- (=0,02).

23 –

2-

1- , n=63	2- , n=51	
16 (25,3%)	20 (39,2%)	=0,01
24 (38%)	20 (39,2%)	=0,01
_	4 (7,8%)	=0,01
_	7 (13,7%)	=0,01

- ,

- 6

(=0,02) 1 2- .

24.

,

2- -

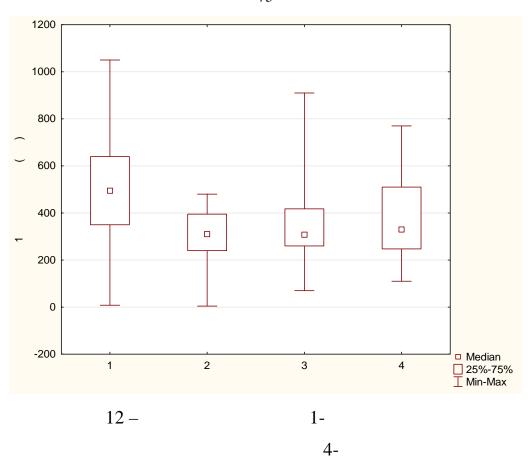
_

1-, 2-

(4 -23,5%;

-40,6%) (6 -35,2%;

-43,75%).


1- .

1- 2-24 -

		1- , n=63	2- , n=51
		23 (36,5%)	16 (31,3%)
		6 (9,5%)	17 (33,3%)
22–27		1 (1,5%)	-
28–37		23 (36,5%)*	2 (3,9%)
22–27		1 (1,5%)	1 (1,9%)
28–37		9 (14,2%)	15 (29,4%)
* _	1- 2-	(<0,	05).

1- $441,1\pm280,4$ (p<0,05) 2-149,3±168,7 . 3-4-375,3±175,6 $403,5\pm183,6$ 2-1-(=0,00004;<0,05).(=0,0004). 498,1±219,7 2- $-297,4\pm139,7$ 3-342,7±172,2 4- $372,1\pm183,8$ (=0,006; =0,01). 1-

12.

 $34,7\pm67,1$ 2-1- $18,9\pm8,1$ $-25,1\pm13,6$ 4-3-22,6±8,9 6,5±3,9 2-2,1±0,3 1- $9,0\pm3,4$ (<0,05). 3-(<0.05; =0.04).2-1-4- $10,3\pm 5,4$ (<0.05; =0.01).2-1-

. 1- $601,1\pm1349,8 \qquad , \qquad 2- \qquad -148,7\pm176,1 \qquad , \qquad 3- \qquad -222,5\pm297,6 \qquad 4- \qquad -196,1\pm186,1 \qquad . \qquad \qquad -25.$

1- 2-

,

. 1- 51 (80,9%)

, 2 (3,17%) 3 (4,7%) -

. 2- 43 (84,3%),

2 (3,9%) 1 (1,9%) (p=0,53).

25 –

4-

	1- , n=63	2- , n=51	3- , n=30	4- , n=30
	441,1	149,3	375,3	403,5±
()	±280,4*	±168,7****	±175,6	183,6****
	498,1	297,4	342,7	372,1±
()	±219,7*	±139,7	±172,2**	183,8***
	34,7	18,9	25,1	22,6
()	±67,1	±8,1	±13,6	±8,9
	2,1	6,5	9,0	10,3
()	±0,3*	±3,9****	±3,4**	±5,4***
	601,1	148,7	222,5	196,1
()	±1349,8	±176,1	±297,6	±186,1

1- 2- (<0,05);

**- 1- 3- (<0,05).;

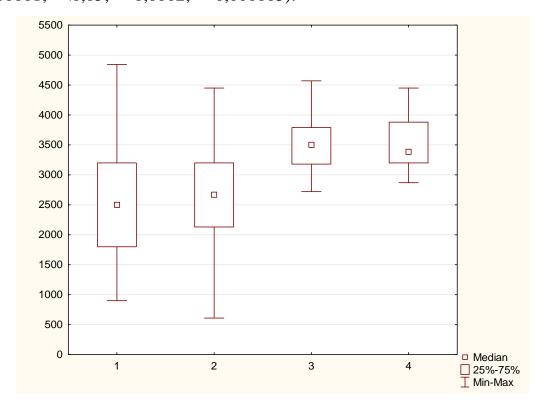
***- 1- 4- (<0,05);

**** - 2- 3- (<0,05);

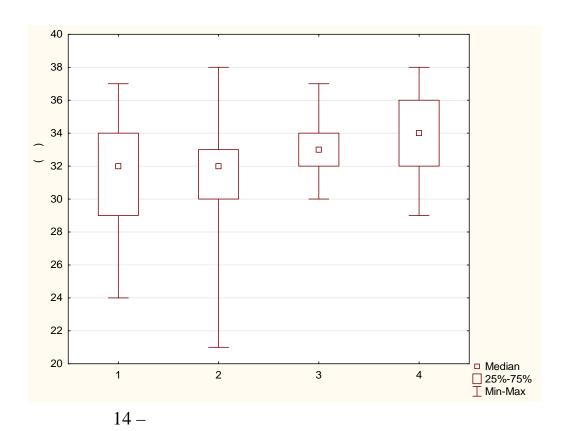
***** - 2- 4- (<0,05).

, ,

,

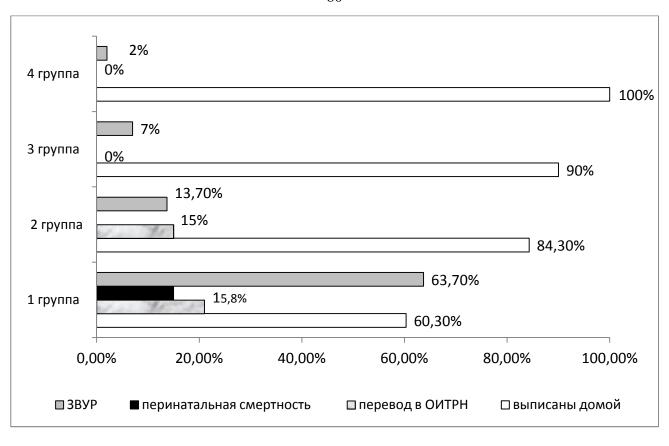

1- 2- . 1-

77 2-- 2620,1±811,5 $2560,7\pm908,1$ (=0,71).(3- 4-(1- 2-)). (1- 2-) 3478,3±458,5 3-1- 2-(=0,000001;=0,000001). 4-3514,3±430,1 (<0.05;<0.05).1- 2-


13.

 $-46,2\pm5,1$ $-47,5\pm5,1$ (=0,16). : 1-, 2-3-4-

: 51,3±1,9 52,4±1,9 1- 2-(=0.000001; <0.05; =0.0002; =0.000003).



1- $31,4\pm2,9$, 2- $-31,1\pm3,5$ (=0,57). 3-33,4±1,6 , 1- 2-(=0.001;=0.0002).4-33,9±2,2 (=0,0001; 1- 2-=0,0001). 14. 1-2- (=0,72). 3- $32,3\pm2,9$ $32,1\pm2,6$ 34,1±0,9 , 1- 2- (=0,001; =0,0002). 4-33,9±1,8 , 1-2-(=0.01;=0.002).

1- 5- . 1-

```
6,1\pm1,6 2- 6,7\pm0,9
                   1-
                           7,1±1,6 2- 7,8±0,8
(=0,01);
              5-
                  1-
             1-
                                  (6,3%)
                           4
(=0,01).
         (3,1\%) - 4
                          , 8 (12,6%) – 5 , 21 (33,3%)
1,2
-6 , 18(28,5\%) - 7 10(15,8\%) - 8 . 2-
          (1,9\%) 4 , 5 (9,8\%) –
     1
5 , 8(15,6\%) - 6 , 28(55\%) - 7 9(17,6\%) - 8 .
                                            33
          1-
                   8
                               2-
                                    (=0,000063).
                                    (1,5\%) 1- -
                         1
 (=0,37).
                               1-
                     7
                                (11,1\%) 2-
                                          12
 3(5,8\%) (=0,33).
       (19%) 1- 10 (19,6%) 2-
            5 (7,9%) 1- 2 (3,9%) 2-
                   (1,5%) 1-
             - 1
                                       (=0,30).
                     ( 15).
                4-
                 38 (60,3%) 1-
                                     43 (84,3%)
                                             2-
    (=0,0005).
                                       2-
                                     13 (20,6%)
 1-
      8 (15.6%) 2-
                          (=0.0005).
                                (1-
                                       ),
10 (15,8%)
             2017
             1000
    18
```


15 –

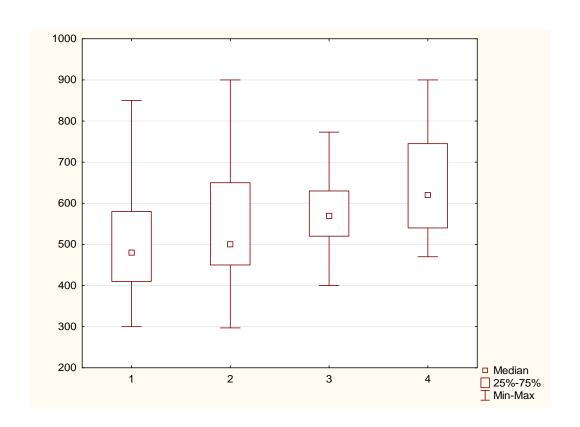
4-

,

•

. , 50 (79,3%) 1- 40 (78,4%) 2- . - 7 (11,1%) 1- 2 (3,9%) 2- . -

1- 1 (1,5%) .
2- (3,1%) 1- 8 (15,6%) 2- .


, -

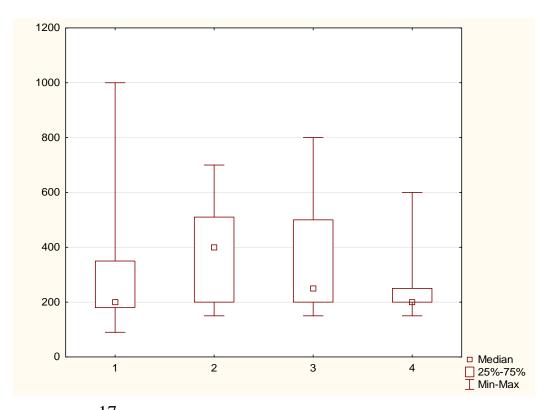
1-

2- (=0,50). 1- $-49,9\pm7,9$ (=0,70). 2-

1-543,1±150,6 493,8±105,1 (=0,04) (16). , 1-4 (6,3%) 2-2 (3,9%) (=0,56). 1-2-26, (=0,36). 1-281,4±177,4 2- $-402,6\pm168,6$ (=0,0003).2-3-360,3±224,1 4-

 $248,3\pm114,5$ (=0,01).

26 –


2-

1- , n=63	2- , n=51
10 (15,8%)	15 (29,4%)
17 (26,9%)	7 (13,7%)
2 (3,1%)	_
1 (1,5%)	_
10 (15,8%)	8 (15,6%)

*- 1- 2- (<0,05).

2- 4-(=0,00002).

. 17.

17 –

```
25,3%
       1-
                     9,8%
                                2-
                                        (=0,03).
                                1-
                                                    22,2%
                                                                 1,9%
          (=0,001).
2-
              : 1-
                                                         2-
                                      11,1%
             (=0,11).
 3,9%
                                       1-
                                                 19
                                                              20%,
            2-
                       -7,8 1,9%
                                               (=0,00001).
                                                           1-
                                 17,4%
      2-
                                  5,8% (=0,00006).
                                     15,8%
                          1-
                                                 (11,1%).
                             7-
                                          1-
                                                    1-
             : 6,4±2,1
                                3,6\pm1,1 ( <0,05)
  2-
                                                                    1-
 2-
```

					1-
5,9±1,7	(<0,05).	9,8±4,1	. 2-		
	,	,			:
- 1-					•
-	2-			•	
,	,	,	,	,	
- 3-		;			,
,	,		,		
_					
		;			
_		;			
- ;					
_				•	,
-				,	
;					

3.3.

-

, , ,

,

,

1- 88,8% 2- -90,1% (=0,82). - 1- 11,1% 2- -9,8%.

2-

-

, 3-

, 27.

1-

100,3±16,5 / , 2-

113,4±11,9 / (=0,000006) (18).

1- , $3,2\pm0,5\times10^{12}/$ $4,1\pm0,4\times10^{12}/$ 2-

(<0,01).

27 – 3-

4-

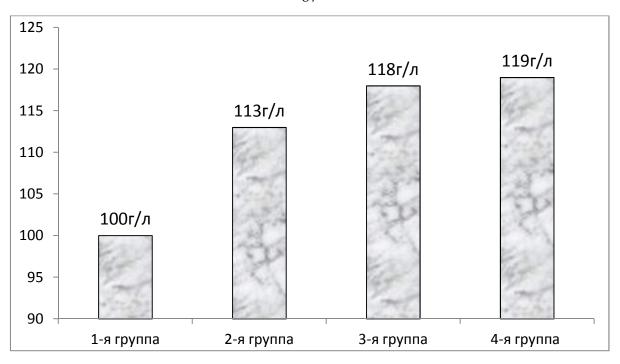
	1- , n=63	2- , n=51	3- , n=30	4- , n=30
,	100,3	113,4	118,2	119,4
, /	±16,5*	±11,9	±9,3**	±9,1***
1012/	3,2	4,1	4,1	4,1
,×10 ¹² /	±0,5*	±0,4	±0,4**	±0,3***
,×10 ⁹ /	7,8	11,1	11,5	10,9
, ×10 /	±1,3*	±3,6	±4,3**	±2,8***
×10 ⁹ /	276,5	257,6	225,1	231,4
$, \times 10^{9}/$	±53,4	±101,2	±48,8**	±45,6***
0/	23,2	20,1	25,5	15,4
, %	±5,1*	±8,8	±11,1	±3,7***
0/	4,9	7,6	9,6	8,3
, %	±2,6*	±4,3	±5,2**	±2,3***
, %	70,8	68,9	60,8	51,1
, 70	±5,1	±11,1	±11,2**	±6,7***
	15,3	30,059	31,200	33,566
, /	±5,4*	±12,616	±9,237**	±8,807***
0%	36,4	29,2	29,1	26,9
, %	±10,2*	±4,4	±2,6**	±3,1***
	l .	J	1	1

* _

** _

***_

1- 2-

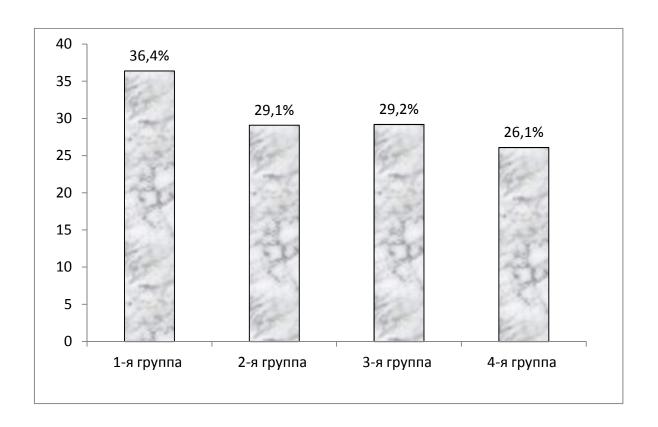

(<0,01).

1- 3-

(<0,01).

1- 4-

(<0,01).

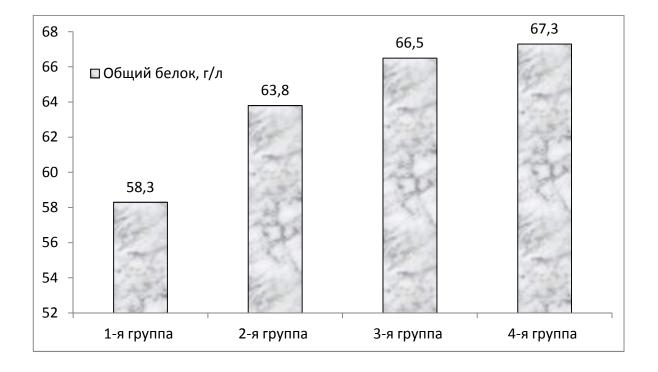


18 – 4-

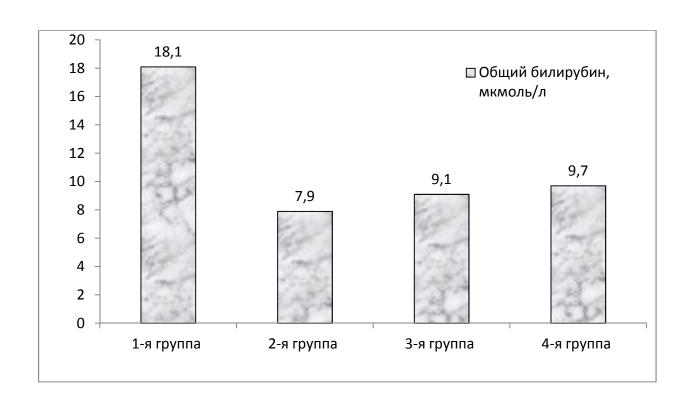
```
1-
                                                                   2-
   : 7.8\pm1.3\times10^9
                    11,1\pm3,6\times10^9/ ( <0,01).
                                                                         1-
        2- : 23,2±5,1% 20,1\pm8,8\% ( =0,01)
                                                      1-
4,9\pm2,6\%,
                                                   2-
                                                                -7,6\pm4,3\%
(=0,00006).
          : 15,3±5,4 /
    1-
                                              2-
                                                         -30,1\pm12,6 /
( <0,01).
                                (
                                        19)
                                       36,4±10,2%
                                                          29,2\pm4,4\%
        (=0,000008).
                              1- 2-
                                                                         1-
                 58,3±5,7 / ,
                                                     2-
                                                              -63,8\pm8,2 /
```

(=0,00005) (20).

4- 28.


19 –

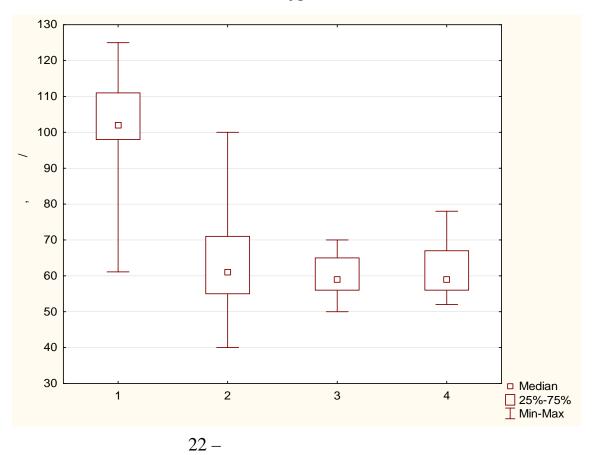
4-

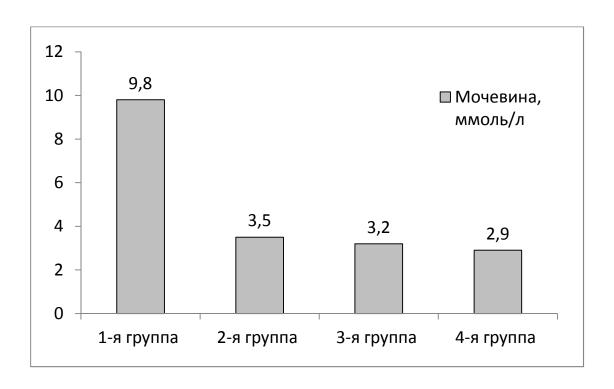

	1- , n=63	2- , n=51	3- , n=30	4- , n=30
1	2	3	4	5
, /	58,3	63,8	66,5	67,3
, ,	±5,7	±8,2*	±5,1**	±4,2***
,	18,1	7,9	9,1	9,7
/	±5,5	±4,6*	±4,4**	±4,7***
,	102,8	63,5	59,9	61,4
/	±12,9	±12,8*	±5,4**	±6,7***

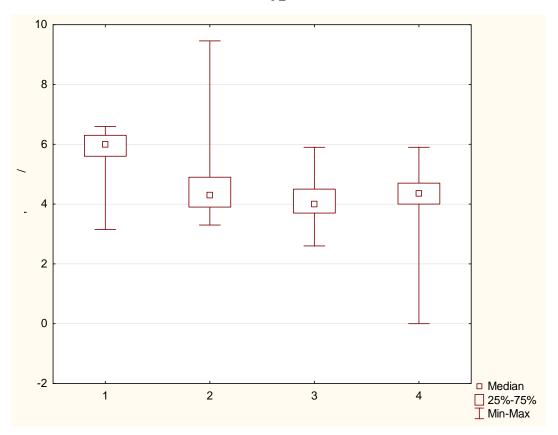
	28			
1	2	3	4	5
/	9,8	3,5	3,2	2,9
, /	±1,9	±1,2*	±1,1**	±0,7***
/	5,7	4,5	4,1	4,2
, /	±0,6	±0,9*	±0,7**	±0,9***
/	79,8	19,2	12,7	12,4
, /	±16,1	±15,5*	±6,6**	±6,2***
/	74,7	21,1	18,4	15,4
, /	±14,2	±10,3*	±7,3**	±4,2***

* - 1- 2- (<0,01); ** - 1- 3- (<0,01); *** - 1- 4- (<0,01).

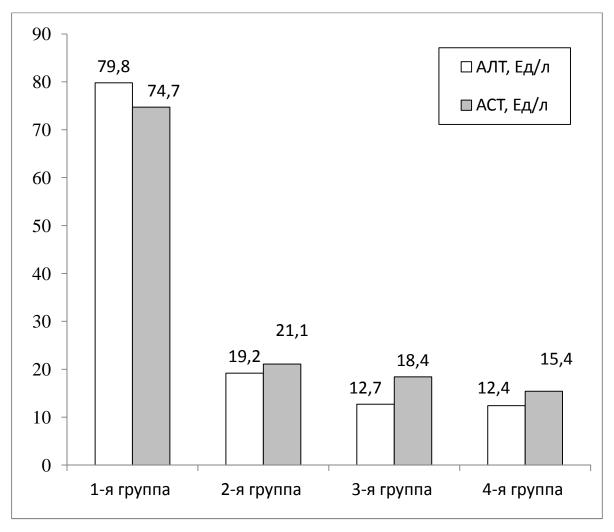
. 1-102,8±12,9 / 2- -63,5±12,8 / (<0,01) (22).




21 –


4-

9,8±1,9 / 3,5±1,2 / 2- (<0,01) (23).


15,7±0,6 / , 2- -4,5±0,9 / (<0,01) (24).

24 -

25 –

4-

29 –

	1- , n=63	2- , n=51	3- , n=30	4- , n=30
1	2	3	4	5
-	4,4	4,3	4,2	4,8
,	±0,9	±0,8****	±0,7*****	±0,6
, %	100,9	100,5	95,6	97,2
, 70	±6,2	±9,4 ****	±5,2 **	±6,71 ***
, /	3,7±0,8	4,1±1,3*	3,7±0,5	3,7±0,5

		94		
	29			
1	2	3	4	5
	1,4±0,6	1,1±0,7	1,1±0,1**	1,1± 0,1 ***
	1,6	0,8	0,8	0,8
	±0,4	±0,1 *	±0,1 **	±0,2 ***
	10,3	9,9	9,3	9,2
,	±3,73	±7,8 *	±5,7 **	±5,4 ***
0/	4,9	3,5	3,4	3,2
, %	±0,75	±0,5*	±0,3 **	±0,42 ***
,	276,5	257,6	225,1	231,4
×10 ⁹ /	±53,4	±101,2	±48,8 **	±45,6 ***
*		1- 2-	(<0,0	05).
** _		1- 3-	(<0,	,05).
*** _		1_ 4_	(\(\)	0.05)

*- 1- 2- (<0,05).

**- 1- 3- (<0,05).

***- 1- 4- (<0,05).

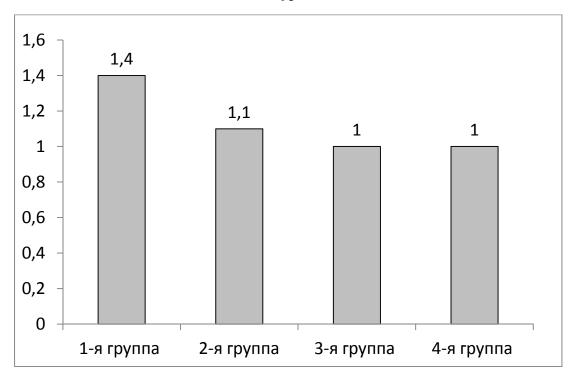
****- 2- 3- (<0,01).

*****- 2- 4- (<0,01).

*****- 3- 4- (<0,001).

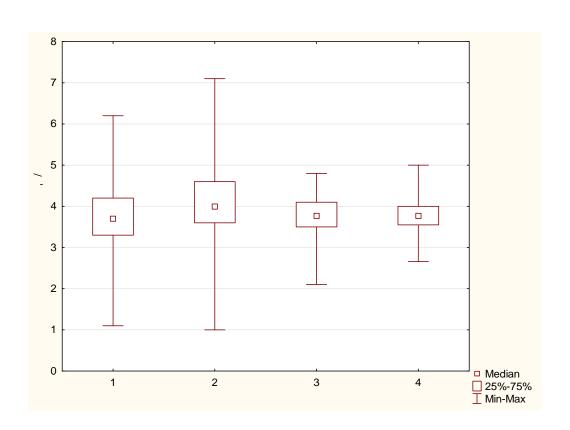
1- (

26), , - (1-) -


. 2-

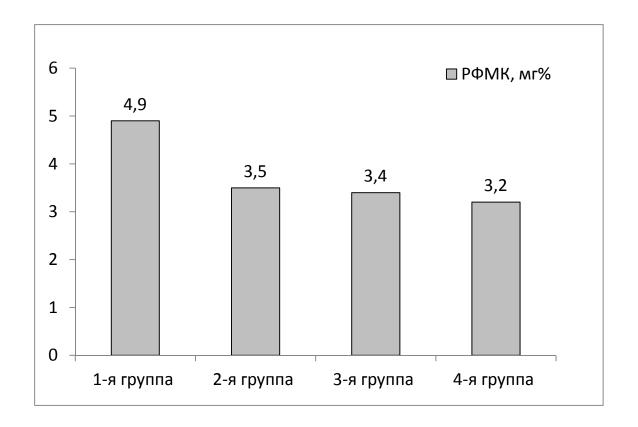
,

,


2-: -

2- $-4,1\pm1,3, p=0,04$ (27).

26 –


4-

27 –

1-

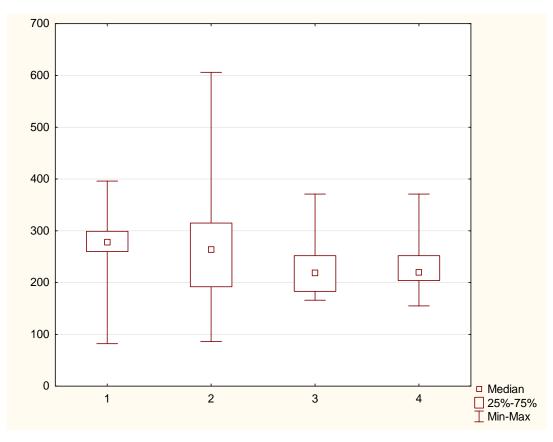
1,6±0,4, 2 - 0,8±0,1, p<0,05. 1-4,9±0,7, , 2- - 3,5±0,5 ,p<0,05 (28).

28 –

4-

3-

1- 2-


,

-

4- , 1- 3- (<0,05) 1- 4- (<0,05).

1- 2-

, (30).

29 –

4-

1- 2- . , pH 1- $5,9\pm0,4$, 2- $-6,1\pm0,5$ (=0,76). 1- $1018,1\pm6,1$, 2- $-1015,5\pm7,8$ (=0,06).

(1- 3-).

(<0,05)

(4-),

> (1-).

30 –

4-

	1- , n=63	2- , n=51	3- , n=30	4- , n=30
, /	1,4	0,3	0,006	0,001
, /	±2,4*	±0,3 ****	±0,01**	±0,004 ***
,	7,1	1,9	0,5	0,2
	±6,6 *	±3,6 *****	±1,47 **	±0,6 ***
,	20,9	2,8	0,6	0,5
	±7,4 *	±3,3 ****	±0,8 **	±2,1 ***
pH,	5,9	6,1	4,3	2,7
pri,	±0,4 ***	±0,5 ****	±1,3 *****	±1,7 *****
	1018,1	1015,5	1015,8	1014,9
	±6,1	±7,8	±6,3	±7,9 ***

1- 2-(<0,01). * _

**_ 1- 3-

(<0,01). ***_

(<0,05). 1- 4-****_

2- 3-(<0,01). (<0,01). 2- 4-*****_

3- 4-(<0,001). ***** _

> 1-2-

96,8% 1-

1,5% -

2-84,3% 1,5% -

, 13,7% – 1,9% – (=0,03). 4-

,

(31).

31 – 1- 2-

	1- , n=63	2- , n=51	3- , n=30	4- , n=30
1	2	3	4	5
-	48,4	61,1	61,3	64,3
,	±5,9 **	±7,4*	±7,1	±7,8 ***
	1,6	1,6	1,5	1,6
,	$\pm 0,1$	±0,1	±0,2	±0,2
	27,3	45,2	50,2	51,7
,	±5,8**	±11,5 *****	±3,3 ****	±4,6 ***
-	52,8	61,5	64,9	67,3
,	±6,7 **	±11,3****	±5,1	±5,9 ***
,	23,7	33,7	34,9	36,7
,	±5,2**	±5,6 *****	±2,6 *****	±3,9 ***
	0,4	0,2		
	±0,5	±0,5*	_	_
	24,2	22,7	22,1	23,2
,	±2,9 **	±3,5 *	±2,4	±3,2

		100			
31					
1	2	3	4	5	
	9,8	13,8	11,7	14,4	
	±5,5 ***	±5,1 *	±2,5	±4,3	
,					
* _	,	1- 2-	(<0,0	5).	
**		1- 3-	(<0,	(<0,01).	
***		1 1	(20	(<0.01)	

* - 1- 2- (<0,05). ** - 1- 3- (<0,01). *** - 1- 4- (<0,01). **** - 2- 3- (<0,05). ***** - 2- 4- (<0,05).

3- 4-

(<0,05).

4- - , ,

. 11–13

***** _

1- 2- , 1-2- -48,4±5,9 61,1±7,4 (<0,05) (30).

19–22

27,3±5,8 , , ,

2- , 45,2±11,5 (<0,05).
- 1-

- 1-2 52.8±6.7 61.5±11.2 (=0.000002)

2- $-52,8\pm6,7$ $61,5\pm11,3$ (=0,000002). 1- $23,7\pm5,2$, 2-

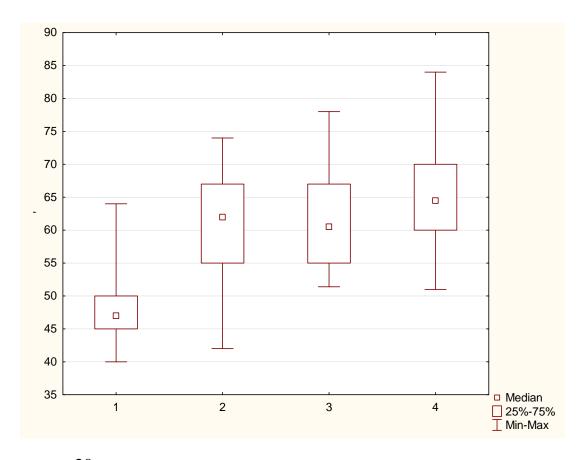
- 33,7±5,6 (<0,05). 19–22 46% 1- 15,6%

2- (=0,02).

2- 4% . 1-

24,2±2,9 ,

2- $-22,7\pm3,5$ (=0,01).


,

(1-). ,

1- -9.8 ± 5.5 13.8 ± 5.1

2- (=0,0001)

4- .

30 –

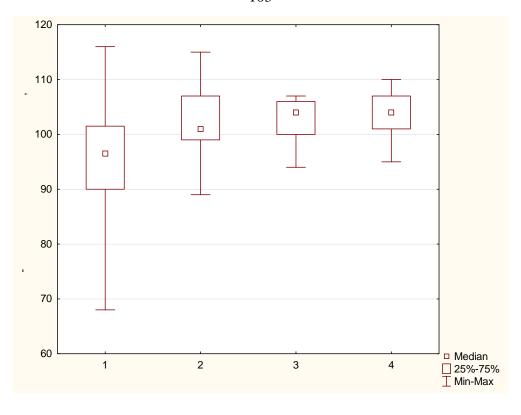
4-

, 32– 34 (32)

, 1- 87,5±7,2 , 2-

 $-80,7\pm6,1$ (=0,000001).

32 – 3-


4-

			1	
	1- , n=63	2- , n=51	3- , n=30	4- , n=30
-	87,5	80,7	82,1	82,8
,	±7,2***	±6,1 *	±3,9**	±3,5
-	95,7	102,6	103,0	103,5
	±11,3 ***	±5,7 *	±3,4 **	±4,5
,				
-	65,1	61,6	60,8	61,8
,	±10,1	±5,1 *	±3,7 **	±2,8
-	2,4	1,8	1,5	1,7
	±0,5 ***	±0,7*	±0,6 **	±0,7
	36,5	33,5	32,6	32,8
,	±7,5 ***	±5,1 *	±2,5 **	±3,6
	11,4	12,7	10,1	12,5
	±6,9	±4,5 ****	±2,1 *****	±4,1
,				

1-2-(<0,05). * _ 1- 3-(<0,05). **_ *** _ (<0,05). 1- 4-(<0,005). ****_ 2- 3-*****_ 2- 4-(<0,05). 3- 4-(<0,005).

1- $-95,7\pm11,3$ 102,6±5,7 (=0,0001) (31). 2-

31 - -

3-

3 1- -65,1±10,1 , 2- -61,6±5,1 (=0,02). 3-

3,1% 1- 25,4% 2- .

3- 44,4%

.

36,5±7,5 33,5±5,1 2- (=0,01). 1- 2-

-

(<0,005) (4-

),

(1-

(2-) (3-).

4-

32–34 , 33.

33 –

3-

4-

	1- , n=63	2- , n=51	3- , n=30	4- , n=30
	110,1	106,3	96,6	102,4
,	±10,1 ***	±10,3 *	±3,6 ****	±4,1 *****
	49,3	48,1	35,1	38,5
,	±6,6 ***	±7,5	±2,5 **	±3,2 *****
	19,6	16,3	16,2	21,6
,	±2,5 ***	±2,2 *	±1,3 **	±2,1 *****
	110,8	109,7	94,6	99,2
,	±8,5 ***	±9,1	±3,3 ****	±4,2 *****
	53,6	48,4	37,8 ±	36,6
,	±5,1 ***	±5,1 *	1,6 **	±3,1 *****
	20,8	17,3	15,8	20,1
,	±2,5**	±2,6 *	±1,3 ****	±1,8 *****

*- 1- 2- (<0,05).

**- 1- 3- (<0,05).

***- 1- 4- (<0,05).

**** - 2- 3- (<0,005).

***** _ 2- 4- (<0,05).

***** - 3- 4- (<0,005).

```
-106,3\pm10,3 (=0,05).
110,1\pm10,1 , 2-
                     1-
                                        49,3±6,6 ,
                                 2-
                                         -48,1\pm7,5 (=0,37).
                                     1-
                                                       19,6\pm2,5
           -16,3\pm2,2 ( <0,05).
   2-
                                             1- 2-
                                                         1-
       53,6±5,1 20,8±2,5
                                   48,4±5,1 17,3±2,6
                                                               2-
                   (=0,000001;<0,05).
                                                       (32-34)
 )
                          4-
                                                      (
                                                             34).
        34 –
                 3-
                                          (32-34)
                                                     )
          4-
```

	1- , n=63	2- , n=51	3- , n=30	4- , n=30
1	2	3	4	5
-	130,8	120,3	99,3	100,1
,	±14,5 ***	±9,4 *	±2,5 **	±2,2 *****
	69,3	57,1	39,2	43,8
,	±10,1 ***	±11,1 ****	±3,5 *****	±3,4 *****
	54,2	45,7	36,5	38,7
,	±12,3 ***	±12,2 *	±3,1 **	±2,2 *****
	28,6	21,1	16,2	19,7
,	±5,5 ***	±6,1 ****	±1,2 **	±2,5 *****

, 19,1 17,4 16,4 23,6		34			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	2	3	4	5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3,3	3,1±	2,9	2,9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,	±0,6 ***	0,2 *	±0,1 **	±0,3
, 19,1 17,4 16,4 23,6 ±3,1 *** ±3,1 ±0,9 ** ±4,1 *****		22,8	20,6±	17,0	26,5
19,1 17,4 16,4 23,6 ±3,1 *** ±3,1 ±0,9 ** ±4,1 *****		±6,3 ***	6,2 ****	±1,2 *****	±4,6 ****
±3,1 *** ±3,1 ±0,9 ** ±4,1 *****	,				
,		19,1	17,4	16,4	23,6
		±3,1 ***	±3,1	±0,9 **	±4,1 *****
19,6 18,2 16,1 22,6	,				
±4,4 *** ±4,2 **** ±0,9 ***** ±3,4 *****					22,6 ±3,4 ****
,	,				
, 99,6 97,2 92,2± 99,1	,	99,6	97,2	92,2±	99,1
±11,1 ±5,7 **** 4,3 ** ±3,2 *****		±11,1	±5,7 ****	4,3 **	±3,2 *****
, 46,1 40,8 35,8 38,5	,	46,1	40,8	35,8	38,5
±9,1 *** ±5,2 * ±1,9 ** ±3,3 *****		±9,1 ***	±5,2 *	±1,9 **	±3,3 *****

1- 2-(<0,05). * _

** _

***_

****_

*****_

***** _

1- 3-

(<0,05).

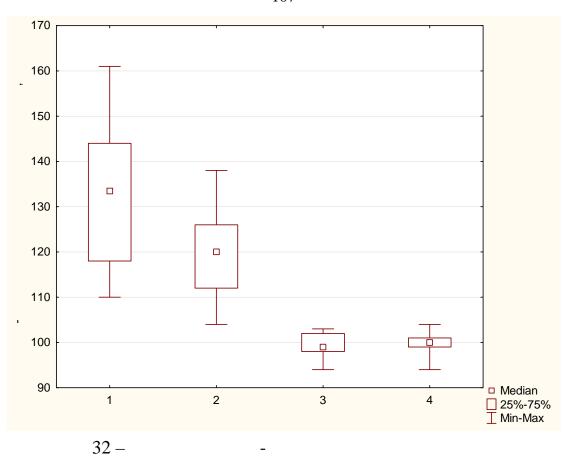
1- 4-

(<0,05).

2- 3-

(<0,005).

2- 4-


(<0,05).

3 4 (<0,05).

1-130,8±14,5

2-

 $120,3\pm 9,4$ (=0,0003) (32).

4-

(=0,24).

(1-), 69,3±10,1 57,1±11,1 2-(=0,000004).1-54,2±12,3 , 2- $-45,7\pm12,2$ (=0,003). 1-2- $-21,1\pm6,1$ (<0,05). 28,6±5,5 , 1- $3,3\pm0,6$ $3,1\pm0,2$ 2- (=0,01). 1-2-1- , $19,1\pm3,1$ $17,4\pm3,1$

2- -99.6 ± 11.1 97.2 ± 5.7

(=0,05).

2-

```
46,1±9,1
      1-
                            ( =0,003).
2-
             -40,8\pm5,2
               (1-
                          ):
```

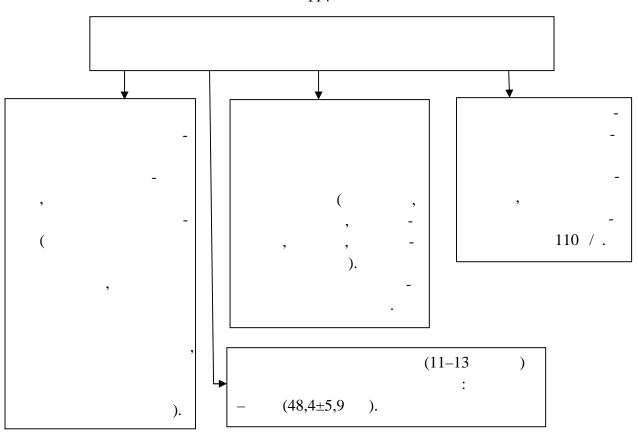

ı

85 XX >140 » [2, . 54].

4.1.

(87,3%), (38%), (71,4%) (73,01%). 65%. $(14,1\pm1,3)$), $(29,8\pm4,4)$)

```
26,7\pm6,1
         (57,1%),
(48%)
(158,8\pm5,3)
(162,2\pm6,4); (=0,003)).
                                                                   distantia spinarum,
distantia cristarum distantia trochanterica
                                         distantia spinarum
                                                                        25,1\pm1,2
                                   distantia trochanterica -32,1\pm2,2
distantia cristarum – 27,8±1,6
        99,1±7,4
                       32,3\pm3,8
                                                          (73,01%)
```



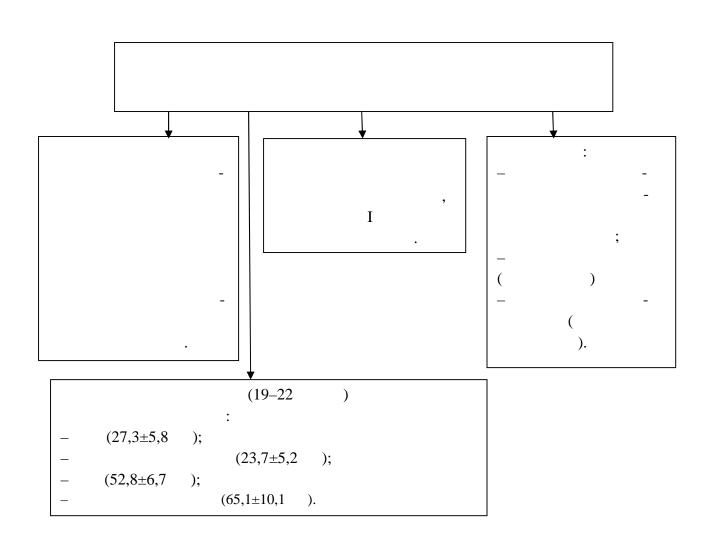
33 –

	,				
,			,		
		·	, ,		
,	,).	,	,
,					

34.

110 / .

34 –


•

[57, 66].

, , 2-

•

35.

35 –

3-

_

67% **«** (1994) [40]. 75 12 35 1

100

(32–34)

.

[30].

 $100,3\pm16,5$ / . , , 26 / .

, 20 / 1

·

, ,

,

,

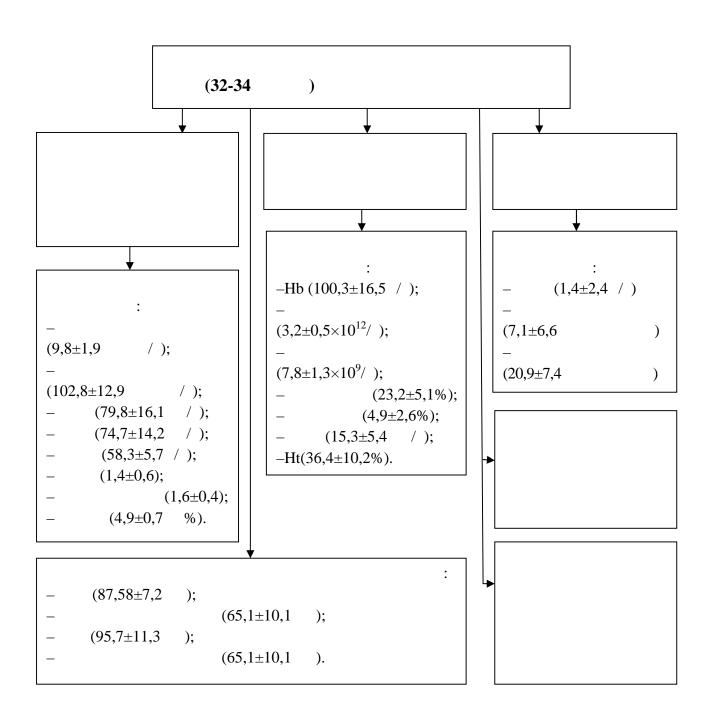
, , , ,

,

, ·

,

·


,

•

3-

32-34

36.

36 –

```
(
                                                                     ),
                                    (
                 , 2019).
                                  1,8%.
            14% (
                                       ., 2018).
(
                                                                             )(
    . . 2015;
                                       ., 2017).
                                                                                (
93%
                  (
```

, 2018). 31,8% ., 2011). (31%), (29,5%), (9–10%) (47%). 80% (., 2017). 2,9 (40,0 2014 14,2%), (., 2014).

,

distantia spinarum, distantia cristarum distantia trochanterica

(71,4%) ((73,01%)). 65%

(87,3%) (38%).

:

, _ .

. 1-

. 2-

, , , , , ,

. 3-

,

· :

,

. ,

, ,

•

,

,

,

,

-

•

,

•

```
1.
                                                           (158,8\pm5,3)
                                                                        , =0,002),
                        (61,7%)
                                                , p=0,00001),
                                  (14,1\pm1,3)
                             (29,8\pm4,4)
                                                =0,02)
(72,1\%, =0,01).
                                                                         - 73,01%,
                            - 65,6%,
                                                       -28,4\%
                                                     (33,3%),
(26,9%)
                                                            (7,9%).
      2.
                                                                  (67,1%),
                                          (65,6%),
(71,5%)
      (63,4%),
                           (31,7%),
                                                               (36,5%),
    (11,1\%),
                                                                         (15,8%)
                                                                            (17,4%)
                  (15,8%)
      3.
                                                                  (100,3\pm16,5),
```

```
(3,2\pm0,5\times10^{12}/)
                                (7.8\pm1.3\times10^{9}/)
                                                                (4,9\pm2,6\%)
                              (15,3±5,4 / ),
     (23,2\pm5,1\%)
                              (36,4\pm10,2\%);
     4.
                                              (58,3\pm5,7),
           (5,7\pm0,6)
                        / )
      -102,8\pm12,9
                        /;
                                   -9,8±1,9 / )
                                                    (79,8\pm16,1) / ),
(18,1±5,5 / ),
(74,7\pm14,2 / ),
     5.
```

- ,

	1.			-
				-
		, ,	,	-
	2.			,
			,	,
	3.	,		٠
		,		-
				11 12 10
22	4.		,	11–13 19–
,	-		- ,	-
	<i>E</i>			
	5.		,	-
				-
	6.			
		32–34		-

				,		,		,	
, 7.	,				,			•	
						3	32–34		
					(,	,		
),		(),			
	()			().			
8.				,			32–34		
	,			,					
						_			
9.									
					,				

.

NO –

```
1.
                                         / .
                                                      // -
                       . – 2019. –       2–1 (48). –     . 1–3.
   2.
                               2015. - 416.
   3.
                                             / . .
                                          . 2010. – 168 .
   4.
           / . . , . . .
                                            //
   . – 2016. – . 22, 5. – . 145–150.
   5. , . .
     / . . , . . .
                                         //
  .-2017.-\phantom{0}.23,\phantom{0}2.-\phantom{0}.84-87.
     / . . [ .]. – 10– ., .
   6.
   - , 2019. - 768 .
                           : . . . /
   7.
 . . . - 17- . - .: , 2004. - 464 .
   8.
                                  / . .
                                                [ .]. –
    - , 2015. – 1080 .
   9.
   , ... , ... [ .] /\!/
      . – 2017. – . 17, 5. – . 7–12.
   10. , . .
                                           . – 2016. – 1 (76). –
  / . . , . .
                          //
 . 19–23.
```

```
11.
                                                  //
    :
                II
    90-
                                                             ., 2018. –
 . 30–31.
   12.
                                        //
                              , 1987. – . 20–23.
   13.
                              è
                 //
                                        :
    , 1987. – . 7–11.
   14.
[
   .] //
                             . – 2016. – 6. – C. 46–52.
   15.
                                    , . . //
                                    .-2014.- 5. - . 291–294.
    16.
                                        , . . //
                       , . - 2017. - 3 (17). - . 66–77.
    17.
                         / . .
                                                          //
                       .-2018.- . 13, 5 (77). - . 21–24.
```

```
18.
           .]. - ., 2016. - 71 .
    19.
                                                            //
                . – 2008. – 2 (60). – . 12–13.
    20.
                                                              ?/ . .
//
                                                       . - 2016. - 3 (13). -
 . 34–40.
    21.
                                                      //
                   . – 2016. – 2. – . 62–64.
    22.
                                                            / . .
                                                           . – 2018. –
                                                                         3. –
 . .
                                 //
 . 67–73.
  23.
                                                           / . .
                                                            . – 2018. –
                                 //
                                                                         10. –
  . .
 . 47–51.
    24.
          . – 2018. – 1. – . 26–30.
    25.
                              [ .] //
2010. - 6-2 (76). - . 31-33.
    26.
```

```
. . , . . [ .]//
2007. - . 14, 1. - . 44-45.
   27.
         , . .
                                          //
               .-2015.-.64, 6.-.26-30.
   28.
      / . .
                                                        //
                           . – 2019. – . 19, 1. – . 12–17.
   29.
      :
                             / .: . . , . . .
  , . . [ .]. – , 2015. – 67 .
   30.
          , . .
                                                 //
                     . – 2011. – 3. – . 15–19.
   31.
                 //
     . – , 1987. – . 23–27.
   32. , . .
                                           , 2006. – 22 .
      : 14.00.01 /
                                            / . .
   33.
      , . .
                               . – 2010. – 4. – . 21–22.
     //
 . .
                                            / . .
       , . .
   34.
        , . . //
       . - 2013. - 6. - . 54-63.
```

```
35.
                            . . //
                             . – 2018. – 1 (40). – . 259–261.
   36.
                            [
                                             1 /
                             : https://www.who.int/ru/news-room/fact-
sheets/detail/maternal-mortality (
                                       01.01.2021)
   37.
                           //
2017. – 2. – . 83.
   38.
    / . . , . . .
                                              //
  . – 2013. – 5. – . 30–35.
   39.
   . : 14.00.01 /
                                                1990.-24
   40.
               . . . . . - . . . : 14.00.01 /
        . - , 1994. - 42 .
   41.
                         //
2017. – 1. – . 8–11.
   42.
                / . .
                                         //
                                                            . – 2018. –
 . 20, 4. – . 467–472.
   43.
              / . . , . . , . . [ .]//
                                   . – 2017. – . 16, 6. – . 16–23. DOI:
10.20953/1726-1678-2017-6-16-23
```

```
44.
                                 //
                                 . - 2012. - . 17, 4. - . 1282–1284.
 45.
                               , . . //
                             . - 2017. - 1. - . 68–74.
 46.
                                     . – 2018. – . 6, 4. – . 25–30.
 47.
                                      3D-
                                       / . . , . . .
                                       . – 2018. – 8. – . 56–65.
       [ .]//
 48.
                               //
                                                       .-2017.-.11,
1. - . 77-81.
49.
                                              //
         . – 2013. – 4 (92). – . 64–68.
 50.
                                                   / . . // -
                                      .-2018.- . 17, 4 (68). - . 4–10.
 51.
                                                            //
                         . – 2017. – . 17, 3. – . 4–8.
```

```
52.
                               . – 2020. – . 15, 5 (89). – . 106–111.
    53.
                                                  , . . // -
                                               . - 2014. - . 14, 5. -
 . 138–142.
 54.
                               / . .
                                             . – .: « », 2016. –
528 .
   55.
                                                . – 2014. – 6. – . 4–10.
                      //
    56.
   / . .
                                          //
2018. - 1. - . 107-111.
   57.
                                                             . – 2022. –
   / . .
                //
  4. - . 29-39
   58.
                  / . .
                                                         //
                 . – 2020. – 9–3 (67). – . 225–229.
    59.
                              //
                      / . .
                  . – 2021. – . 21, 1. – . 82–86.
    60.
```

, . - 2016. - 12-1 (34). - . 80-84.

//

```
61.
                                                       . - 2017. -
                                        //
  14 (148). – . 268–270.
   62.
                                  //
                                                        . – 2009. –
           . :
  1. - . 116–120.
   63.
                                                 //
                              . – 2019. – . 18, 6. – . 51–58. DOI:
10.20953/1726-1678-2019-6-51-58
                                                  2018 /
   64.
             :
                                                   ,2018.-121.
   65.
                        ,2010.-22 .
   66.
                                     / . .
                                                               //
                               .-2020.-65-1.-.89-94.
   67.
                             . – 2020. – 1–5. – . 155–159.
   68.
                   //
                                               . – 2011. – 1–2 (77).
```

- . 87–90.

```
69.
                                     . – 2009. – 12. – . 139–142.
  70.
                                                       / . .
                                                                         //
                            . – 2010. – 6–1 (76). – . 107–109.
  71.
                                                              //
                   .-2011.- 1-2(77).- .91-93.
  72.
                                                              //
                   .-2010.-\phantom{000}6-1\ (76).-\phantom{000}.110-112.
  73.
                                                   ). - 2011. - . 102,
. . //
                                                (
3. - . 47–48.
  74.
                                                      .-2008.-.15,
              //
. 206–208.
  75.
                                                       //
         . – 2015. – 14. – . 810–813.
  76.
                                     / . .
                                                    , . . //
                                     .-2007.-.6, 4(24).-.29-32.
```

- 77. Alese, M.O. Preeclampsia and HELLP syndrome, the role of the liver / M.O. Alese, J. Moodley, T.J. Naicker // Matern. Fetal. Neonatal Med. 2021. Vol. 34 (1). P. 117-123.
- 78. Ali, A.A. Seasonal variation and hypertensive disorders of pregnancy in eastern Sudan / A.A. Ali, G.K. Adam, T.M. Abdallah // J. Obstet. Gynaecol. 2015. Vol. 35, 2. P. 153–4.
- 79. Ambient temperature and risk of preeclampsia: biased association? / N. Auger, J. Siemiatycki, M. Bilodeau-Bertrand [et al.] // Paediatr. Perinat. Epidemiol. 2017. Vol. 31, 4. P. 267–271.
- 80. Are Meteorological Conditions within the First Trimester of Pregnancy Associated with the Risk of Severe Pre-Eclampsia? / T.C. Tran, A. Boumendil, L. Bussieres [et al.] // Paediatr. Perinat. Epidemiol. 2015. Vol. 29, 4. P. 261–270.
- 81. Aspirin for Evidence–Based Preeclampsia Prevention trial: effect of aspirin in prevention of preterm preeclampsia in subgroups of women according to their characteristics and medical and obstetrical history / L.C. Poon, D. Wright, D.L. Rolnik [et al.] // Am. J. Obstet. Gynecol. 2017. Vol. 217, 5. . 585–585.
- 82. Association between adverse pregnancy outcome and imbalance in angiogenic regulators and oxidative stress biomarkers in gestational hypertension and preeclampsia / C.A. Turpin, S.A. Sakyi, W.K. Owiredu [et al.] // BMC Pregnancy Childbirth. 2015. Vol. 15 P. 189.
- 83. Association of Air Pollution and Heat Exposure With Preterm Birth, Low Birth Weight, and Stillbirth in the US: A Systematic Review / B. Bekkar, S. Pacheco, R. Basu, N. DeNicola // JAMA Netw Open. 2020. Vol. 3, 6. P. e208243. DOI: 10.1001/jamanetworkopen.2020.8243.
- 84. Association of meteorological factors and seasonality with preeclampsia: a 5–year study in northeast of Iran / R. Nasiri, A. AhmadiShadmehri, P. KhajehGhiassi [et al.] // Clin. Exp. Hypertens. (New York). 2014. Vol. 36, 8. P. 586–9.
- 85. Associations between high temperatures in pregnancy and risk of preterm birth, low birth weight, and stillbirths: systematic review and meta-analysis / M.F. Chersich,

- M.D. Pham, A. Areal [et al.] // BMJ. 2020. Vol. 371. P. m3811. DOI: 10.1136/bmj.m3811.
- 86. Beltran, A.J. Associations of meteorology with adverse pregnancy outcomes: a systematic review of preeclampsia, preterm birth and birth weight / A.J. Beltran, J. Wu, O. Laurent // Int. J. Environ. Res. Public Health. 2013. Vol. 11, 1. . 91–172.
- 87. Carbillon, L. Preeclampsia, placental insufficiency, autism, and antiphospholipid antibodies / L. Carbillon, E. Lachassinne, A. Mekinian // JAMA Pediatrics. 2015. Vol. 169, 6. P. 605–6.
- 88. Clinical differences between early— and late—onset severe preeclampsia and analysis of predictors for perinatal outcome / J. Stubert, S. Ullmann, M. Dieterich [et al.] // J. Perinat. Med. 2014. Vol. 42, 5. P. 617–27.
- 89. Clinical proteomics in obstetrics and neonatology / J. Klein, B. Buffin–Meyer, W. Mullen [et al.] // Expert Rev. Proteomics. 2014. Vol. 11, 1. P. 75–89.
- 90. Consortium Maternal and newborn health risks of climate change: A call for awareness and global action / N. Roos, S. Kovats, Sh. Hajat [et al.] // Acta Obstet. Gynecol. Scand. 2021. Vol. 100, 4. P. 566–570. DOI: 10.1111/aogs.14124.
- 91. Cytotrophoblasts up–regulate soluble fms-like tyrosine kinase-1 expression under reduced oxygen: an implication for the placental vascular development and the pathophysiology of preeclampsia / T. Nagamatsu, T. Fujii, M. Kusumi [et al.] // Endocrinology. 2004. Vol. 145, 11. P. 4838–4845.
- 92. Dadvand, P. Congenital anomalies: an under-evaluated risk of climate change / P. Dadvand // Occup. Environ. Med. 2017. Vol. 74. . 315–320.
- 93. Diagnosis, evaluation, and management of the hypertensive disorders of pregnancy: executive / L.A. Magee, A. Pels, M. Helewa [et al.] // J. Obstet. Gynaecol. Can. 2014. Vol. 36, 7. P. 575–576. DOI: 10.1016/S1701–2163(15)30533–8.
- 94. Dzhalilova, D. Differences in Tolerance to Hypoxia: Physiological, Biochemical, and Molecular–Biological Characteristics / D. Dzhalilova, O. Makarova // Biomedicines. 2020. Vol. 8, 10. P. 428. DOI: 10.3390/biomedicines8100428.
- 95. Early estimates of the indirect effects of the COVID-19 pandemic on maternal and child mortality in low-income and middle-income countries: a modelling study /

- T. Roberton, E.D. Carter, V.B. Chou [et al.] // Lancet Glob. Health. 2020. 8. P. e901–e908.
- 96. Evaluation of maternal systemic inflammatory response in preeclampsia / D. Mihu, C. Razvan, A. Malutan, C. Mihaela // Taiwan J. Obstet. Gynecol. 2015. Vol. 54, 2 P. 160–6.
- 97. First Trimester Placental Retinol–Binding Protein 4 (RBP4) and Pregnancy–Associated Placental Protein A (PAPP-A) in the Prediction of Early-Onset Severe Preeclampsia / A. Yliniemi, M.-M. Nurkkala, S. Kopman [et al.] // Metab. Clin. Exp. 2015. Vol. 64. P. 521–26.
- 98. First–trimester prediction of hypertensive disorders in pregnancy / L.C. Poon, N.A. Kametas, N. Maiz [et al.] // Hypertension. 2009. Vol. 53, 5. P. 812–818.
- 99. Global causes of maternal death: a WHO systematic analysis / L. Say, D. Chou, A. Gemmill [et al.] // Lancet Glob. Health. 2014. 2. P. e323–e333. DOI: 10.1016/S2214–109X(14)70227–X.
- 100. Ha, S. The Changing Climate and Pregnancy Health / S. Ha // Curr. Environ. Health Rep. 2022. Vol. 9, 2. P. 263–275. DOI: 10.1007/s40572–022–00345–9. doi: 10.1007/s40572–022–00345–9.
- 101. Heat shock protein-70 and 4-hydroxy-2-nonenal adducts in human placental villous tissue of normotensive, preeclamptic and intrauterine growth restricted pregnancies / M.D. Hnat, J.W. Meadows, D.E. Brockman [et al.] // Am. J. Obstet. Gynecol. 2005. Vol. 193. P. 836–840. DOI: 10.1016/j.ajog.2005.01.059.
- 102. High-altitude residence alters blood-pressure course and increases hypertensive disorders of pregnancy / B. Bailey, A.G. Euser, K.A. Bol [et al.] // J. Matern Fetal Neonatal Med. 2022. Vol. 35, 7. P. 1264–1271. DOI: 10.1080/14767058.2020.1745181.
- 103. Hlimi, T. Association of anemia, pre-eclampsia and eclampsia with seasonality / T. Hlimi // Health Place. 2015. Vol. 31. P. 180–192.
- 104. Hypertension, pregnancy and weather: is seasonality involved? / B. Melo, M. Amorim, L. Katz [et al.] // Rev. Assoc. Med. Brasil. 2014. Vol. 60, 2. P. 105–10. DOI: 10.1590/1806–9282.60.02.006

- 105. Increased serum levels of inflammatory mediators and low frequency of regulatory T cells in the peripheral blood of preeclamptic Mexican women / M.A. Moreno-Eutimio, J.M. Tovar–Rodríguez, K. Vargas-Avila [et al.] // Biomed. Res. Int. 2014. 2014. P. 413249. DOI: 10.1155/2014/413249.
- 106. Interleukin-1 family cytokines and their regulatory proteins in normal pregnancy and pre-eclampsia / J.H. Southcombe, C.W. Redman, I.L. Sargent, I. Granne // Clin. Exp. Immunol. 2015. Vol. 181, 3 P. 480–90.
- 107. Julian, C.G. High altitude during pregnancy / C.G. Julian // Clin. Chest Med. 2011. Vol. 32, 1. P. 21–31. DOI: 10.1016/j.ccm.2010.10.008
- 108. Khedagi, A.M. Hypertensive Disorders of Pregnancy / A.M. Khedagi, N.A. Bello // Cardiol. Clin. 2021. Vol. 39, 1. P. 77–90. DOI: 10.1016/j.ccl.2020.09.005.
- 109. Kuehn, L. Heat Exposure and Maternal Health in the Face of Climate Change / L. Kuehn, S. McCormick // Int. J. Environ. Res. Public Health. 2017. Vol. 14, 8. P. 853. DOI: 10.3390/ijerph14080853.
- 110. Liu, J.L. Effect of high altitude hypoxia on fetal development during pregnancy and the reason analysis / J.L. Liu, S.Q. Ma, T.N. Wuren // Sheng Li XueBao. 2017. Vol. 69, 2. P. 235–239.
- 111. Naljayan, M.V. New Developments in the Pathogenesis of Preeclampsia / M.V. Naljayan, S.A. Karumanchi // Adv. Chronic Kidney Dis. 2013. Vol. 20, 3. P. 265–270. DOI: 10.1053/j.ackd.2013.02.003.
- 112. Oxidative stress and preeclampsia: A review / P. Guerby, F. Vidal, S. Garoby–Salom [et al.] // Gynecol. Obstet. Fertil. 2015. Vol. 43, 11. P. 751–6.
- 113. Oxidative stress, placental ageing—related pathologies and adverse pregnancy outcomes / Z. Sultana, K. Maiti, J. Aitken [et al.] // Am. J. Reprod. Immunol. 2017. Vol. 77, 5. DOI: 10.1111/aji.12653.
- 114. Park, H.J. Combined Screening for Early Detection of Pre–Eclampsia / H.J. Park, S.S. Shim, D.H. Cha // Int. J. Mol. Sci. 2015. Vol. 16. P. 17952–17974.

- 115. Placental volume, vasculature and calcification in pregnancies complicated by pre-eclampsia and intra-uterine growth restriction / M.C. Moran, C. Mulcahy, G. Zombori [et al.] // Eur. J. Obstet. Gynecol. Reprod. Biol. 2015. Vol. 195. P. 12–7.
- 116. Plasma biomarkers for the identification of women at risk for early-onset preeclampsia / A. Kolialexi, G.T. Tsangaris, S. Sifakis [et al.] // Expert Rev. Proteomics. 2017. Vol. 14, 3. P. 269–276. DOI: 10.1080/14789450.2017.1291345.
- 117. Population changes, racial/ethnic disparities, and birth outcomes in Louisiana after Hurricane Katrina / E.W. Harville, T. Tran, X. Xiong, P. Buekens // Disaster Med. Public Health Prep. 2010. 4. P. S39–S45.
- 118. Postpartum mental health after Hurricane Katrina: a cohort study / E.W. Harville, X. Xiong, G. Pridjian [et al.] // BMC Pregnancy Childbirth. 2009. 9. P. 21.
 - 119. Poursafa, . Systematic review on adverse birth outcomes of climate change / . Poursafa, M. Keikha, R. Kelishadi // J. Res. Med. Sci. 2015. Vol. 20, 4. . 397–402.
- 120. Pre-eclampsia: pathogenesis, novel diagnostics and therapies / E.A. Phipps, R. Thadhani, T. Benzing, S.A. Karumanchi // Nat. Rev. Nephrol. 2019. Vol. 15, 6. P. 386. DOI: 10.1038/s41581–019–0156–1.
- 121. Raymond, D. A critical review of early–onset and late–onset preeclampsia / D. Raymond, E. Peterson // Obstet. Gynecol. Surv. 2011. Vol. 66. P. 497–506.
- 122. Roberge, S. Aspirin for the prevention of preterm and term preeclampsia: systematic review and metaanalysis / S. Roberge, E. Bujold, K.H. Nicolaides // Am. J. Obstet. Gynecol. 2018. Vol. 218. . 287–293.
- 123. Rylander, A. Eclampsia is more prevalent during the winter season in Sweden / A. Rylander, P.G. Lindqvist // Acta Obstet. Gynecol. Scand. 2011. Vol. 90, 1. P. 114–7.
- 124. Seasonal influence on the admittance of pre-eclampsia patients in Tygerberg Hospital / A. Immink, S. Scherjon, R. Wolterbeek, D. Wilhelm Steyn // J. Acta Obstet. Gynecol. Scand. 2008. Vol. 87, 1. P. 36–42.

- 125. Seasonal variation in preeclampsia based on timing of conception / J.K. Phillips, I.M. Bernstein, J.A. Mongeon, G.J. Badger // Obstet. Gynecol. 2004. Vol. 104, 5. P. 1015–20.
- 126. Seasonal Variation in the Incidence of Preeclampsia and Eclampsia in Kigali, Rwanda / L. Mutabazi, L. Bazzett–Matabele, J. Small Maria [et al.] // Obstet. Gynecol. 2019. Vol. 133, Suppl. 1. P. 178S.
- 127. Seasonal variation in the prevalence of pregnancy-induced hypertension in Japanese women / M. Morikawa, T. Yamada, T. Yamada [et al.] // J. Obstetr. Gynaecol. Res. 2014. Vol. 40, 4. P. 926–31.
- 128. Seki, H. Balance of antiangiogenic and angiogenic factors in the context of the etiology of preeclampsia / H. Seki // Acta Obstet. Gynecol. Scand. 2014. Vol. 93, 10. P. 959–964. DOI: 10.1111/aogs.12473.
- 129. Serum biomarkers predictive of pre-eclampsia / S. Anand, T.M. Bench Alvarez, W.E. Johnson [et al.] // iomark. Med. 2015. Vol. 9, 6. . 563–75.
- 130. Similarities and differences between the risk factors for gestational hypertension and preeclampsia: A population based cohort study in south China / X. Li, H. Tan, X. Huang [et al.] // Int. J. Women's Cardiovasc. Health. 2016. Vol. 6, 1. P. 66–71.
- 131. Sircar, M. Pathogenesis of preeclampsia / M. Sircar, R. Thadhani, S.A. Karumanchi // Curr. Opin. Nephrol. Hypertens. 2015. Vol. 24. . 131–138.
- 132. Small, H. Prostasin, proteases, and preeclampsia / H. Small, G. Currie, C. Delles // J. Hypertens. 2016. Vol. 34. P. 193–195.
- 133. Staykov, D. Posterior reversible encephalopathy syndrome / D. Staykov, S. Schwab // J. Intensive Care Med. 2012. Vol. 27, 1. P. 11–24.
- 134. Subramaniam, V. Seasonal variation in the incidence of preeclampsia and eclampsia in tropical climatic conditions / V. Subramaniam // BMC Women's Health. 2007. 7. P. 18.
- 135. Temperature and preeclampsia: Epidemiological evidence that perturbation in maternal heat homeostasis affects pregnancy outcome / S. Shashar, I. Kloog, O. Erez

- [et al.] // PLoS One. 2020. Vol. 15, 5. P. e0232877. DOI: 10.1371/journal.pone.0232877.
- 136. The impact of hypoxaemia on vascular function in lowlanders and high altitude indigenous populations / M.M. Tymko, J.C. Tremblay, D.M. Bailey [et al.] // J. Physiol. 2019. 597 (24). P. 5759–5776. DOI: 10.1113/JP277191.
- 137. The role of cytokines as inflammatory mediators in preeclampsia / I. Udenze, C. Amadi, N. Awolola, C.C. Makwe // Pan Afr. Med. J. 2015. Vol. 20. P. 219.
- 138. Total and Fetal Circulating Cell-Free DNA, Angiogenic, and Antiangiogenic Factors in Preeclampsia and HELLP Syndrome / R. Muñoz–Hernández, P. Medrano-Campillo, M.L. Miranda [et al.] // Am. J. Hypertens. 2017. Vol. 30, 7. P. 673–682. DOI: 10.1093/ajh/hpx024.
- 139. Two–stage screening for preterm preeclampsia at 11–13 weeks' gestation / A. Wright, D. Wright, A. Syngelaki [et al.] // Am. J. Obstet. Gynecol. 2018. Vol. 220, 2. P. 197.e1–197.e11. DOI: 10.1016/j.ajog.2018.10.092.
- 140. Uteroplacental ischemia results in proteinuric hypertension and elevated sFLT–1 / A. Makris, C. Thornton, J. Thompson [et al.] // Kidney Int. 2007. Vol. 71, 10. P. 977–984.
- 141. Walker, C.K. Preeclampsia, placental insufficiency, autism, and antiphospholipid antibodies–reply / C.K. Walker, P. Ashwood, I. Hertz-Picciotto // JAMA Pediatrics. 2015. Vol. 169, 6. P. 606–7.
- 142. Wellington, K. Seasonal trend in the occurrence of preeclampsia and eclampsia in Texas / K. Wellington, Z.D. Mulla // Am. J. Hypertens. 2012. Vol. 25, 2. P. 115–9.
- 143. Zhang, P. Decidual Vasculopathy in Preeclampsia and Spiral Artery Remodeling Revisited: Shallow Invasion versus Failure of Involution / P. Zhang // AJP Rep. 2018. Vol. 8, 4. P. 241–246.