ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ» МИНИСТЕРСТВА ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

Оптика, атомная физика

Разработчик кафедра медицинской физики с курсом информатики

Специальность 30.05.02 Медицинская биофизика

Наименование ОПОП 30.05.02 Медицинская биофизика

Квалификация Врач-биофизик

ФГОС ВО Утвержден Приказом Министерства

науки и высшего образования Российской Федерации № 1002 от

13 августа 2020 г.

Цель и задачи ФОМ (ФОС)

Цель ФОМ (ФОС) – установить уровень сформированности компетенций у обучающихся специальности 30.05.02 Медицинская биофизика, изучивших дисциплину «Оптика, атомная физика».

Основной задачей ФОМ (ФОС) дисциплины «Оптика, атомная физика» является проверка знаний, умений и владений обучающегося согласно матрице компетенций рассматриваемого направления подготовки.

Паспорт оценочных материалов по дисциплине «Физика, математика»

№	Наименование пункта	Значение
1.	Специальность/Направление подготовки	Медицинская биофизика
2.	Кафедра	Медицинская физика с
		курсом информатики
3.	Автор-разработчик	Кудрейко АА
4.	Наименование дисциплины	Оптика, атомная физика
5.	Общая трудоемкость по учебному плану	324 ч/9 з.е.
6.	Наименование папки	Фонд оценочных средств по
		дисциплине «Оптика,
		атомная физика»
7.	Количество заданий всего по дисциплине	100
8.	Количество заданий	100
9.	Из них правильных ответов должно быть (%):	
10.	Для оценки «отлично» не менее	91 %
11.	Для оценки «хорошо» не менее	81 %
12.	Для оценки «удовлетворительно» не менее	71 %
13.	Для оценки «зачтено» не менее	71%
14.	Время (в минутах)	60 минут
15.	Вопросы к аттестации	60
16.	Задачи	15

В результате изучения дисциплины у обучающегося формируются следующие компетенции:

Наименование компетенции	
	Индикатор достижения компетенции
ОПК-1. Способен использовать и	ОПК-1.1. Использует знания о современных
применять фундаментальные и	актуальных проблемах, основных открытиях и
прикладные медицинские,	методологических разработках в области
естественнонаучные знания для	биологических и смежных наук, понимает
постановки и решения стандартных и	междисциплинарные связи и способен их
инновационных задач	применять при решении задач профессиональной
профессиональной деятельности	деятельности.
	ОПК-1.2. Анализирует тенденции развития
	научных исследований и практических разработок
	в избранной сфере профессиональной
	деятельности, формулирует инновационные
	предложения для решения нестандартных задач,
	используя углубленную общенаучную и
	методическую специальную подготовку.
	ОПК-1.3. Способен планировать,
	организовывать и проводить научно-
	исследовательские работы в области
	биотехнологии, проводить корректную обработку
	результатов экспериментов и делать обоснованные
	заключения и выводы.
ОПК-4. Способен определять стратегик	<u>-</u>
и проблематику исследований, выбирати	источниках и методах получения
оптимальные способы их решения	профессиональной информации, направлениях
проводить системный анализ объектов	научных исследований в сфере профессиональной
исследования, отвечать за правильности	деятельности.
и обоснованность выводов, внедрение	ОПК-4.2. Умеет выявлять перспективные
полученных результатов в практическое	проблемы и формулировать принципы решения
здравоохранение	актуальных научно-исследовательских задач на
	основе использования комплексной информации, в
	том числе на стыке областей знания.
	ОПК-4.3. Умеет разрабатывать методики
	решения и координировать их выполнение, с
	учетом требований техники безопасности.

Задания

На закрытый вопрос рекомендованное время -2 мин.

На открытое задание рекомендованное время -4 мин.

Компетенция	Вопросы	Правильные
	1	ответы
	Выберите один правильный ответ или рассчитайте ответ	
ОПК-1.1	На какую стационарную орбиту переходят электроны	
	в атоме водорода при испускании лучей видимой	
	части спектра?	
	а) На вторую	a
	б) На пятую	
	в) На четвертую	
	г) На третью	
ОПК-1.2	Атом водорода при переходе электрона с любого	
	возбужденного энергетического уровня на первый	
	возбужденный уровень излучает электромагнитные	
	волны, относящиеся в основном к	a
	а) Ультрафиолетовому излучению	
	б) Инфракрасному диапазону	
	в) Видимому свету	
	г) Рентгеновскому излучению	
ОПК-1.3	Чему равен импульс электрона, находящегося на	
	первой боровской орбите, радиус которой равен 53·10-	
	12 M?	
	TCD M	
	a) $2 \cdot 10^{-24} \frac{\text{K}\Gamma \cdot \text{M}}{\text{c}}$ 6) $4 \cdot 10^{-24} \frac{\text{K}\Gamma \cdot \text{M}}{\text{c}}$	
	c	
	$6) 4.10^{-24} \frac{\text{K}\Gamma \cdot \text{M}}{}$	a
	c	
	$(R) \qquad 6.10^{-24} \frac{\text{K}\Gamma \cdot \text{M}}{\text{M}}$	
	c c	
	B) $6.10^{-24} \frac{\text{K}\Gamma \cdot \text{M}}{\text{c}}$ $\Gamma) 0.2.10^{-34} \frac{\text{K}\Gamma \cdot \text{M}}{\text{c}}$	
	Γ) $0.2 \cdot 10^{-34} {c}$	
ОПК-4.1	Если энергия ионизации атома водорода Е _і , то 1-й	
	потенциал возбуждения атома равен (е – заряд	
	электрона)	
	F	a
	$1. \frac{E_i}{I}$	
	e	
	1. $\frac{E_i}{e}$ 2. $\frac{E_i}{2e}$	

	20	
	$3. \frac{2E_i}{}$	
	e	
	4. $\frac{2E_i}{a}$	
	$\frac{4}{3e}$	
ОПК-4.2	При облучении атома водорода электромагнитным	
	излучением длиной волны λ_0 электрон перешел с m-й	
	на п-ю орбиту, а при возвращении в исходное	
	состояние электрон перешел сначала с п-ой орбиты на	
	k -ю орбиту, испустив квант света с длиной волны λ_1 , а	
	затем на т-ю стационарную орбиту, излучив свет с	
	длиной волны λ_2 (m < k < n). Тогда	
	1 1 1	a
	$a) \qquad \frac{1}{\lambda_0} = \frac{1}{\lambda_1} + \frac{1}{\lambda_2}$	
	$\delta_0 = \lambda_1 + \lambda_2$	
	, , , , , , , , , , , , , , , , , , , ,	
	$_{\rm B)} \frac{\rm m}{\lambda_0} = \frac{\rm n}{\lambda_1} + \frac{\rm k}{\lambda_2}$	
	$\lambda_0 = \lambda_1 = \lambda_2$	
	1 1 1	
	Γ) $\frac{1}{\lambda_0} = \frac{1}{\lambda_2} - \frac{1}{\lambda_1}$	
ОПК-4.3	При излучении атомом водорода фотона с длиной	
	волны $\lambda = 4,86 \cdot 10^{-7}$ м кинетическая энергия электрона в	
	атоме изменится на (эВ)	
	атоме изменител на (ЭВ)	a
	a) 2,55	u
	б) 10,2	
	B) 5,6	
	г) 1,89	
ОПК-1.1	С какой стационарной орбиты на какую переходит	
	электрон в атоме водорода при испускании волны с	
	наименьшей частотой в видимой области спектра?	
		a
	а) с третьей на вторую	
	б) со второй на первую	
	в) с третьей на четвертую	
OTHE 1.2	г) с четвертой на вторую	
ОПК-1.2	Неточность при измерении координаты электрона,	
	движущегося по прямолинейной траектории равна 10	
	Å. Рассчитайте неточность в определении: Неточность	
	при измерении координаты электрона, движущегося по	
	прямолинейной траектории равна 10 Å. Рассчитайте	a
	неточность в определении импульса (Δр); скорости	
	(Δv) ; кинетической энергии (ΔE) этого электрона.	
	or KT·M - M	
	а) $1,05\cdot10^{-25} \frac{\text{K}\Gamma \cdot \text{M}}{\text{c}}; 1,16\cdot10^5 \frac{\text{M}}{\text{c}}; 6,06\cdot10^{-21} \text{Дж}$	
	C C	

	б) $6,62 \cdot 10^{-25} \frac{\text{K}\Gamma \cdot \text{M}}{\text{c}}; 10^6 \frac{\text{M}}{\text{c}}; 1,05 \cdot 10^{-21} \text{Дж}$	
	в) $1,05\cdot10^{-25} \frac{\text{K}\Gamma \cdot \text{M}}{\text{c}}$; $6,62\cdot10^5 \frac{\text{M}}{\text{c}}$; $6,62\cdot10^{-34}$ Дж	
	Γ) $1,16\cdot10^{-28} \frac{\mathrm{K}\Gamma\cdot\mathrm{M}}{\mathrm{c}}$; $6,06\cdot10^{5} \frac{\mathrm{M}}{\mathrm{c}}$; $6,06\cdot10^{-21}$ Дж	
ОПК-1.3	Волновая функция $\psi(x) = A \sin\left(\frac{2\pi}{l}x\right)$ определена	
	только в области $0 \le x \le l$. Нормировочный множитель A равен	
	a) $\sqrt{\frac{2}{l}}$	a
	$\begin{array}{ccc} & & & \\ & & & &$	
	Γ) $\frac{\sqrt{2}}{l}$	
ОПК-4.1	Частица в прямоугольной потенциальной яме находится в первом возбужденном состоянии. Ширина ямы l . Плотность вероятности нахождения частицы максимальна в точке интервала $0 < x < l$:	
	a) $x = \frac{l}{2}$	a
	$\begin{array}{ll} \text{б)} & \text{x} = 0 \\ \text{B)} & \text{x} = \frac{l}{4} \end{array}$	
	Γ) $X = l$	
ОПК-4.2	Главное квантовое число n может принимать значения	
	a) $n = 1, 2, 3,$ 6) $-\infty < n < +\infty$ B) $0 < n < \infty$	a
OFFIC 4.2	Γ) $1 < n < \infty$	
ОПК-4.3	Магнитное квантовое число m _l может принимать значения:	
	a) $m_l = 0, \pm 1, \pm 2,, \pm l$ 6) $m_l = 0, \pm 1, \pm 2,, \pm n$ B) $m_l = \pm 1, \pm 2,, \pm n$	a
	$\Gamma) \qquad \mathbf{m}_l = \pm 1, \pm 2, \dots, \pm l$	
ОПК-1.1	Квантовое число m _s может принимать значения	a

a) $m_s = \pm \frac{1}{2}$	
$6) m_s = \frac{1}{2}$	
B) $m_s = -\frac{1}{2}, 0, +\frac{1}{2}$	
Γ) $m_s = +\frac{1}{2}, 1$	
Общее число электронных состояний, отличающихся хотя бы одним из квантовых чисел	
a) $2n^2$ 6) n^2 B) $(2l+1)^2$	a
Сколько электронов в атоме могут иметь одинаковые квантовые числа n, l, m_l, m_s ?	
a) 1 b) 2 B) $2(2l+1)$ Γ) $2n^2$	
Какова длина волны, ассоциированная с электроном, энергия которого равна 100 эВ?	1,23 Å
Параллельный пучок фотонов с частотой v падает на зеркальную поверхность под углом α. Давление света на эту поверхность, если через единицу площади поперечного сечения пучка за секунду проходит п фотонов, равно	$2\frac{hv}{c}n\cos\alpha$
Плоская световая волна интенсивности I падает на плоскую зеркальную поверхность с коэффициентом отражения ρ под углом α. Нормальное давление, которое оказывает свет на эту поверхность равно	$(1+\rho)\frac{I}{c}\cos\alpha$
Какие длины волн электромагнитного излучения характерны для фотоэффекта; эффекта Комптона?	УФ; рентген
Минимальное значение угла Брюстера i ₀ при падении света на прозрачный диэлектрик:	$i_0 = \frac{\pi}{4}$ c/tgi_0
В изотропном веществе, для которого угол Брюстера і освет распространяется со скоростью:	c/tgi ₀
Волна естественного света интенсивности I_0 проходит последовательно через два поляроида, плоскости которых повернуты на угол ϕ друг относительно друга. Как поляризована волна на выходе из системы? а) Линейно поляризована в плоскости второго поляризатора	a
	а) $2n^2$ б) n^2 в) $(2l+1)^2$ г) $2(2l+1)^2$ Сколько электронов в атоме могут иметь одинаковые квантовые числа n, l, m_l, m_s ? а) 1 б) 2 в) $2(2l+1)$ г) $2n^2$ Какова длина волны, ассоциированная с электроном, энергия которого равна 100 эВ? Параллельный пучок фотонов с частотой v падает на зеркальную поверхность под углом α . Давление света на эту поверхность, если через единицу площади поперечного сечения пучка за секунду проходит n фотонов, равно Плоская световая волна интенсивности n падает на плоскую зеркальную поверхность с коэффициентом отражения n под углом n Нормальное давление, которое оказывает свет на эту поверхность равно Какие длины волн электромагнитного излучения характерны для фотоэффекта; эффекта Комптона? Минимальное значение угла Брюстера n при падении света на прозрачный диэлектрик: В изотропном веществе, для которого угол Брюстера n свет распространяется со скоростью: Волна естественного света интенсивности n проходит последовательно через два поляроида, плоскости которых повернуты на угол n друг относительно друга. Как поляризована волна на выходе из системы?

	(c) T v	
	б) Линейно поляризована в плоскости первого поляризатора в) Частично поляризована в плоскости второго поляризатора	
	поляризатора г) Получим смесь естественного и частично поляризованного света	
ОПК-4.2	Волна естественного света с интенсивностью I_0 проходит последовательно через два поляризатора, плоскости которых повернуты на угол ϕ друготносительно друга. Чему равна ее интенсивность и степень поляризации после прохождения первого поляризатора? а) $I_1 = \frac{1}{2}I_0$, $P_1 = 1$ б) $I_1 = I_0$, $P_1 = \frac{1}{2}$ в) $I_1 = \frac{1}{2}I_0$, $P_1 = \frac{1}{2}$	a
ОПК-4.3	Волна естественного света интенсивности I_0 проходит последовательно через два поляризатора, плоскости которых повернуты на угол ϕ друг относительно друга. Чему равна ее интенсивность и степень поляризации после прохождения второго поляризатора? $I_2 = \frac{1}{2} I_0 \cos^2 \phi , P_2 = 1$	
	6) $I_2 = I_0 \cos^2 \varphi$, $P_2 = \cos^2 \varphi$ B) $I_2 = \frac{1}{2}I_0$, $P_2 = 1$ Γ) $I_2 = \frac{1}{2}I_0 \cos^2 \varphi$, $P_2 = \cos^2 \varphi$	a
ОПК-1.1	Два скрещенных поляроида P_1 и P_2 расположены на пути волны естественного света интенсивности I_0 . Между ними помещают третий поляроид P_3 . Как должна быть ориентирована его плоскость, чтобы интенсивность света, прошедшего через всю систему была максимальной? а) Под углом 45^0 к плоскости первого поляроида 6 0 Под углом 30^0 к плоскости первого поляроида 6 1 Под углом 60^0 к плоскости первого поляроида 6 3 Под углом 60^0 к плоскости первого поляроида 6 4 Под углом 60^0 6 к плоскости первого поляроида 60^0 6 к плоскости первого поляроида	a
ОПК-1.2	Два скрещенных поляроида P_1 и P_2 расположены на пути волны естественного света интенсивности I_0 . Между ними помещают третий поляроид P_3 . Вращая его добиваются максимальной интенсивности света	$\frac{1}{8}I_0$

	после прохождения второго поляризатора Р2. Чему	
ОПК-1.3	равна эта интенсивность? Угол между плоскостями пропускания поляризатора и анализатора 30°. Если увеличить угол в 2 раза, то интенсивность света, прошедшего через оба поляризатора а) уменьшится в 3 раза б) увеличится в 2 раза в) уменьшится в 2 раза г) увеличится в 3 раза	a
ОПК-4.1	Если направление распространения светового луча параллельно оси кристалла, то двойное лучепреломление а) не наблюдается в любом случае б) наблюдается, если падает естественный свет в) наблюдается, если световой луч поляризованный г) не наблюдается, если световой луч поляризованный	
ОПК-4.2	Каково соотношение между длинами волн обыкновенного и необыкновенного лучей, если для кристалла $n_0 < n_e$?	$\lambda_0 > \lambda_e$
ОПК-4.3	Двойное лучепреломление света в кристалле объясняется: а) анизотропией диэлектрической проницаемости кристалла б) зависимостью показателя преломления от длины волны падающего света в) анизотропией плотности кристалла г) анизотропией магнитной проницаемости кристалла	a
ОПК-1.1	Показатели преломления кристалла для обыкновенного и необыкновенного лучей n ₀ и n _e . Чему равна минимальная толщина пластинки в четверть волны для этих лучей?	$d = \frac{\lambda}{4(n_0 - n_e)}$
ОПК-1.2	Как изменится наблюдаемая оптическая картина в случае эффекта Керра, если направление электрического поля изменить на противоположное?	Не изменится
ОПК-1.3	Кювета с раствором сахара находится между скрещенными николями. Некоторый раствор сахара поворачивает плоскость поляризации на угол 30°. Как изменится интенсивность света, прошедшего через раствор с концентрацией в 2 раза большей? а) Увеличится в 3 раза б) Увеличится в 2 раза в) Уменьшится в 2 раза г) Уменьшится в 3 раза	
ОПК-4.1	Фазы колебаний, приходящих в точку наблюдения от соседних зон Френеля: а) отличаются на π б) отличаются на $\frac{\pi}{2}$	a

	в) совпадают	
	в) совпадаютг) отличаются на 2π	
ОПК-4.2	В точке А экрана, для которой открыты 4 зоны Френеля,	
	наблюдается:	
	а) темное пятно	
	б) светлое пятно	a
	в) темная и две светлых полосы освещенности	
	г) светлая и две темных полосы освещенности	
ОПК-4.3	В точке А экрана, для которой открыты 3 зоны	
	Френеля, наблюдается:	
	а) светлое пятно	a
	б) темное пятно	u
	в) темная и две светлых полосы освещенности	
OFFIC 1 1	Г) светлая и две темных полосы освещенности	
ОПК-1.1	В точке А экрана, отстоящего от круглого отверстия на	
	расстоянии в наблюдают дифракционный максимум (светлое пятно) при освещении отверстия плоской	Однозначно
	монохроматической волной. Как изменится	ответить нельзя
	дифракционная картина, если экран отодвинуть на	
	расстояние 2b?	
ОПК-1.2	На экране можно наблюдать дифракцию света от	
	непрозрачного диска радиуса г при условии (λ – длина	
	световой волны, b – расстояние диска до экрана), если	
	a) $r \sim \sqrt{b\lambda}$	
	$ \delta\rangle r >> \sqrt{b\lambda}$	a
	a) $r \sim \sqrt{b\lambda}$ 6) $r >> \sqrt{b\lambda}$ B) $r << \sqrt{b\lambda}$ r) $r = \sqrt{b\lambda}$	
	Γ) $r = \sqrt{b\lambda}$	
ОПК-1.3	На пути светового луча, идущего в воздухе, поставили	
	зонную пластинку, пропускающую только первую,	
	третью и пятую зоны Френеля. Интенсивность света в центре дифракционной картины на экране:	
	а) увеличилась в 36 раз	a
	б) уменьшилась в 6 раз	
	в) увеличилась в 6 раз	
	г) увеличилась в 3 раза	
ОПК-4.1	На пути от источника света поставили в первом случае	
	диафрагму с круглым отверстием, пропускающим	
	первую зону Френеля, во втором - зонную пластинку,	1:4
	пропускающую только первую и третью зоны Френеля.	
	Интенсивности света в точке наблюдения на экране в	
ОПК-4.2	первом и втором случаях относятся как	
OHN-4.2	На диафрагму с круглым отверстием диаметром 4 мм падает параллельный пучок монохроматического света	
	падает паразлельный пучок монохроматического света $(\lambda = 0.5 \text{ мкм})$. Точка наблюдения находится на оси	
	отверстия на экране на расстоянии b = 1 м от него. Для	8
	этой точки на отверстии укладывается число зон	
	Френеля, равное	
ОПК-4.3	Между источником света (λ = 0,5 мкм) и экраном	a
	установили диафрагму с круглым отверстием радиуса	

_	-	
	1мм. Расстояние от диафрагмы до источника равно 1 м , расстояние от диафрагмы до экрана - 2 м. Как изменится интенсивность света в точке, лежащей против центра пластинки, если диафрагму убрать? а) Уменьшится в 4 раза	
	б) Увеличится в 2 раза в) Уменьшится в 2 раза	
	г) Увеличится в 4 раза	
ОПК-1.1	Как изменится радиус зоны Френеля, если 1) на отверстие падает плоская волна, расстояние от отверстия до экрана 2 м; 2) фронт падающей волны сферический с радиусом 2 м, а точка наблюдения находится далеко от отверстия? а) $r_2 = r_1$ б) $r_2 = \frac{1}{2} r_1$	a
	B) $r_2 = 2r_1$ Γ) $r_2 = \frac{1}{4}r_1$	
ОПК-1.2	На щель падает плоская монохроматическая волна. В точке экрана, где наблюдают дифракционную картину, имеет место максимум освещенности в направлении ф согласно утверждению: А. Для данной точки на щели укладывается четное число зон Френеля; Б. Для данной точки на щели укладывается нечетное число зон Френеля; В. Разность хода крайних лучей равно четному числу полуволн $\left(\frac{\lambda}{2}\right)$; Г. Разность хода крайних лучей равно нечетному числу полуволн $\left(\frac{\lambda}{2}\right)$. Ответы: а) Б, Г б) Только А В) Только Б г) А, В д) В, Г	
ОПК-1.3	На узкую щель падает нормально монохроматический свет. Угол ф отклонения лучей, соответствующих второй светлой дифракционной полосе равен 30°. Ширина щели в длинах волн равна	5λ
ОПК-4.1	На щель шириной а = 6λ падает нормально параллельный пучок монохроматического света с длиной волны λ. Синус угла дифракции, под которым наблюдается второй дифракционный минимум, равен	0,33
ОПК-4.2	На щель шириной $0,1$ мм падает нормально монохроматический свет с длиной волны $\lambda=0,5$ мкм. Ширина центрального максимума составляет 1 см. Расстояние от щели до экрана равно (м)	1

ОПК-4.3	Какой должна быть ширина щели а, чтобы первый дифракционный минимум наблюдался под углом 90^{0} при освещении синим светом ($\lambda = 440$ нм) (мкм)?	0,44
ОПК-1.3	На дифракционную решетку падает нормально пучок монохроматического света. Максимум третьего порядка наблюдается под углом 30^0 к нормали. Постоянная решетки d, выраженная в длинах волн падающего света, равна	6λ
ОПК-1.1	На дифракционную решетку падает нормально пучок монохроматического света. Максимум четвертого порядка наблюдается под углом 30°. Общее число максимумов, даваемых решеткой, равно	17

Вопросы для проверки теоретических знаний по дисциплине

Компетенции /индикаторы достижения компетенции Заполняется разработчико м	Вопросы к зачету по дисциплине «Оптика, атомная физика»
ОПК-1.1	Электромагнитная теория света.
ОПК-1.2	Двухлучевая интерференция, осуществляемая делением амплитуды. Интерферометр
ОПК-1.3	Аберрации оптических систем. Оптические инструменты.
ОПК-4.1	Интерференция в тонких плёнках, пластинах. Многолучевая интерференция.
ОПК-4.2	Опыт Юнга. Принцип Гюйгенса.
ОПК-4.3	Двухлучевая интерференция, осуществляемая делением волнового фронта.
ОПК-1.1	Видимость интерференционной картины. Принцип Фурьеспектроскопии. Типы интерферометров.
ОПК-1.2	Майкельсона. Причины размывания полос интерференции.
ОПК-1.3	Геометрическая оптика, физические основы офтальмологии.
ОПК-4.1	Дифракционная теория оптических инструментов.
ОПК-4.2	Закон Малюса. Оптически активные вещества. Вращение плоскости поляризации. Поляриметрия.
ОПК-4.3	Фотоэлектрический эффект.
ОПК-1.1	Явление Комптона, давление света. Химические действия света.
ОПК-1.2	Интерференция и дифракция световых волн в биомедицинских исследованиях и диагностике.
ОПК-1.3	Законы теплового излучения. Абсолютно черное тело. Гипотеза Планка. Квантовые свойства света.
ОПК-4.1	Энергия и импульс фотона. Внешний фотоэффект. Уравнение Эйнштейна. Эффект Комптона.
ОПК-4.2	Гипотеза Л. де Бройля. Волновые свойства микрочастиц.

	Соотношения неопределенностей.				
ОПК-4.3	Амплитуда вероятности. Уравнение Шредингера. Стационарные				
	состояния.				
ОПК-1.1	Опыты Резерфорда. Ядерная модель атома. Постулаты Н. Бора. Атом				
	водорода в квантовой механике.				
ОПК-1.2	Квантование моментов. Квантовые числа. Магнетон Бора. Опыт				
	Штерна и Герлаха. Спин.				
ОПК-1.3	Неразличимость тождественных частиц. Сложные атомы.				
	Конфигурация электронных оболочек				
ОПК-4.1	Распределения Бозе и Ферми. Квантовая теория теплоемкости.				
	Вырожденный электронный газ.				
ОПК-4.2	Явление сверхпроводимости.				
ОПК-4.3	Зонная теория твердых тел. Металлы, диэлектрики и				
	полупроводники. Собственная и примесная проводимость				
	полупроводников.				
ОПК-1.3	Контактные электрические явления в металлах и полупроводниках.				
ОПК-4.1	Состав атомного ядра. Дефект массы. Период полураспада. Виды				
	радиоактивности. Ядерные реакции.				
ОПК-4.2	Дозиметрия. Виды взаимодействий и классификация элементарных				
	частиц.				
ОПК-4.3	Эффект Мёссбауэра.				
ОПК-1.3	Фундаментальные частицы.				

Задания для проверки сформированных знаний, умений и навыков

На открытое задание рекомендованное время – 15 мин

Компетенции					
/индикаторы					
достижения					
компетенции	Задачи				
	Задачи				
Заполняется					
разработчико					
M					
Ответ	0,5				
	ЗАДАЧА 1				
	3.44.1.1				
ОПК-4/ОПК-	Дифракционная решётка, имеющая 500 штрихов на 1 мм, даёт на				
4.2	экране, отстоящем от линзы на l=1 м, спектр. Определите, на каком				
	расстоянии друг от друга будут находиться фиолетовые границы				
	спектров второго порядка (в метрах).				
Ответ	0,873				
	ЗАДАЧА 2				
	На толстую стеклянную пластинку, покрытую тонкой плёнкой с				
ОПК-4/ОПК-					
4.2	показателем преломления n=1.4, падает нормально параллельный				
	пучок монохроматического света с λ=0.6 мкм. Отражённый свет				
	максимально ослаблен вследствие интерференции. Определите				
	минимальную толщину плёнки. (в нм)				
Ответ	107				
	ЗАДАЧА З				
	Пучок естественного света падает на систему из четырёх призм				
ОПК-4/ОПК-	Николя, главная плоскость каждой из которых повёрнута на угол φ=60°				
4.2	относительно главной плоскости предыдущей призмы. Во сколько раз				
	уменьшится интенсивность света, проходящего через эту систему?				
	Поглощением света пренебречь.				
Ответ	128				
	ЗАДАЧА 4				
ОПК-4/ОПК-					
4.2	Определите (в электрон-вольтах) работу выхода электрона из рубидия,				
	если красная граница фотоэффекта для рубидия λ кр=0,81 мкм.				
Ответ	1,534				
ОТВСТ					
	ЗАДАЧА 5				
ОПК-1/ОПК-	Do over ve non emiliare even entre even entre even entre even entre even even entre even even even even even even even ev				
1.2	Во сколько раз отличаются энергетические светимости участков тела				
1,2	человека, имеющих температуру 32 °С и 32,5 °С соответственно? Тело				
	человека считать серым				
Ответ	1,007				
	ЗАДАЧА 6				
ОПК-1/ОПК-	При прохождении потока рентгеновского излучения через костную				
1.1	ткань произошло его ослабление в два раза. Учитывая, что толщина				
1.1	слоя костной ткани составляла 20 мм, найдете линейный коэффициент				
	ослабления (в мм ⁻¹ .)				
Ответ	0,035				
ОПК-1/ОПК-					
1.1					
1.1	Сколько ядер урана U(92,238) распалось в течение года, если				

	1.0					
	первоначальная масса урана m=1 г?					
Ответ	$3.92*10^{11}$					
	ЗАДАЧА 8					
ОПК-1/ОПК-	Мощность экспозиционной дозы γ-излучения на расстоянии 1 м от					
1.2	источника составляет 0.1 Р/мин. Рабочий находится 6 ч в день на					
	расстоянии 10 м от источника. Какую эквивалентную дозу облучения					
	он получает за один рабочий день? (в мЗв)					
Ответ	3,6					
	ЗАДАЧА 9					
ОПК-1/ОПК-						
1.2	Во сколько раз изменится скорость электронов в рентгеновской трубке					
	при увеличении напряжения от 80 кВ до 120 кВ?					
Ответ	1,23					
	ЗАДАЧА 10					
ОПК-1/ОПК-						
1.3	Определите квантовый выход люминесценции вещества, если его					
1.5	оптическая плотность равна 0,05, а интенсивность люминесценции в 15					
	раз меньше интенсивности возбуждающего света.					
Ответ	0,6					

ШКАЛЫ И КРИТЕРИИ ОЦЕНКИ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

«Оптика, атомная физика»

Проведение зачёта по дисциплине «Оптика, атомная физика» как основной формы проверки знаний обучающихся предполагает соблюдение ряда условий, обеспечивающих педагогическую эффективность оценочной процедуры. Важнейшие среди них:

- 1. обеспечить самостоятельность ответа обучающегося по билетам одинаковой сложности требуемой программой уровня;
 - 2. определить глубину знаний программы по предмету;
 - 3. определить уровень владения научным языком и терминологией;
- 4. определить умение логически, корректно и аргументированно излагать ответ на зачете;
 - 5. определить умение выполнять предусмотренные программой задания.

«Зачтено» заслуживает ответ, содержащий:

- глубокое и систематическое знание всего программного материала или знание важнейших разделов и основного содержания программы;
 - свободное владение научным языком и терминологией;
 - логически корректное и аргументированное изложение ответа;
 - умение выполнять предусмотренные программой задания.

«Не зачтено» заслуживает ответ, содержащий:

- незнание вопросов основного содержания программы;
- неумение выполнять предусмотренные программой задания.